肠道微生态与肠道疾病

2014-08-15 00:46:07
四川解剖学杂志 2014年2期
关键词:胃肠道菌群肠道

陈 曦

(成都大学附属医院 消化内科,成都610000)

人类肠道微生态是一个包含了约1013~1014个微生物的复杂生态系统[25],这些微生物在长期的进化过程中与宿主相互依赖、相互制约,形成了和谐共生的整体,当这个和谐的整体受到破坏时,便会发生相应的肠道疾病。本文将就目前肠道微生态与肠道疾病的研究进展进行简单综述。

1 肠道微生态

当人们认识到肠道微生态的存在以及它可能与人类肠道生理及病理过程有重要关联时,就不断试图认清它的本质,因此诞生了人类微生态计划和人类肠道系统基因组计划(MetaHIT)等[26,27]较为系统的以人类正常肠道微生态结构和功能为对象的研究计划。随着这些研究计划的开展,学者已经发现人类不同个体的肠道微生态在基因水平存在一个由大量微生物基因及相关传导通路组成的共同核心,偏离这个核心就会影响人类健康、导致疾病发生[27,28]。同时,人们对肠道微生物与宿主之间相互作用的具体机制也有了更深的理解。学者发现,肠道上皮细胞和粘膜免疫细胞广泛存在着与特定微生物相互识别的模式受体(Pattern recognition receptors,PRR),包括视黄酸诱导基因-I样RNA解螺旋酶、C-型血凝素受体(C-typelectin receptors,CLR)、富有亮氨酸的核苷酸结合域蛋白/N样受体(Nodlike receptors,NLR)和 T 样受体(Toll-like receptors,TLR)[29,30]。肠道微生物通过与这些受体的模式结合激活相应的信号转导通路,参与宿主免疫细胞及肠道上皮细胞的凋亡、增生等生理活动。

另外,肠道微生态越来越多的生理功能被发现。除了传统的促进消化吸收、参与物质代谢和抑制肠道致病菌生长外,肠道微生态还在胃肠道系统的发生和自稳过程中起关键作用[31],对心血管系统[32,33]和免疫系统[34]亦有着重要影响。肠道微生态失调,与肥胖症[35]、脂肪肝[36]、糖尿病[37]、关节炎等[38]许多疾病相关,其中包括肠易激综合征、炎症性肠病及结直肠恶性肿瘤在内的肠道疾病与肠道微生态的关系尤为密切。

2 肠道微生态与肠道疾病

2.1 肠道微生态与肠易激综合征

肠易激综合征(Irritable bowel syndrome,IBS)是多因素引起的胃肠道功能紊乱。其主要的致病机制包括胃肠道动力失调、内脏神经高敏感、神经-免疫-内分泌传递通路紊乱等。

近年来,许多报道都证明肠道微生态与上述IBS致病机制有密切关系。有研究发现肠道菌群缺乏的动物小肠蠕动速度明显减慢、结肠扩张[39],而重建肠道菌群后动物也重新建立起正常的肠道蠕动,其机制可能与肠道菌群对内源及外源物质的分解代谢有关[39]。肠道菌群通过分解代谢增加相关酶的表达,促进神经调节因子(如:γ-氨基丁酸)及特殊肌蛋白的合成,代谢产生的氢气、甲烷及短链脂肪酸可调节胃肠道动力[39]、影响胃肠道的敏感性。因此,肠道微生态失调,可导致胃肠道动力失调及内脏神经敏感性改变[24],最终导致IBS发生。

IBS患者的肠道微生态失调可分为两种类型:肠道细菌数量的改变和肠道菌群构成的改变。早在1998年就有学者发现IBS患者的结肠产气量增多,提示肠道产气菌增加可能与IBS发病相关[40],后有研究通过C-木糖呼气实验[41]及乳果糖呼吸实验[42]分别证实了IBS患者存在小肠细菌生长过度(Small intestinal bacterial over growth,SIBO),SIBO 导致肠道氢气和甲烷产生增多,促使炎症反应出现及小肠动力紊乱。另有研究证实新霉素[43]或利福昔明[44]治疗甲烷产量明显增多的IBS后,患者症状得到明显改善,亦支持SIBO导致IBS的假说。尽管在确诊是否存在SIBO的方法上仍然存在一些争议,但最近有一项将不同研究方法整合后的META分析显示,IBS患者肠道细菌的数量约为对照组的4倍[45],因此将SIBO视为IBS的致病因素之一,特别是以腹胀为主诉、存在胃肠道动力紊乱的IBS,是合理的。1982年就有学者通过粪便细菌培养发现IBS患者肠道菌群中乳酸杆菌和双歧杆菌较对照组明显减少,而大肠杆菌增多[46],提示肠道菌群构成改变可能导致IBS发生。后人采用结肠粘膜活检[47]、聚合酶链反应-变性梯度凝胶电泳法等[48]方法均证实了IBS患者的确存在肠道菌群构成的变化。进一步的研究发现,在腹泻-便秘型中 Allisonellahe和Bacteroide增多,双歧杆菌减少则更多见于腹泻型IBS[49]。而肠道菌群构成改变引起IBS的具体机制还有待进一步研究。

在IBS患者中,约20%继发于胃肠道急性细菌感染,提示除肠道细菌数量的改变和肠道菌群构成的改变外,急性胃肠道感染可能是发生IBS的独立危险因素。感染持续的时间是感染后是否发生感染后肠 易 激 综 合 征 (Post infectious irritable bowel syndrome,PI-IBS)的关键,感染持续的时间越长,发生PI-IBS的概率越大,当感染持续时间超过3周时,PI-IBS发生的危险性增加11倍[50]。另外,感染的年龄较小和焦虑或抑郁的情绪状态也是导致PIIBS发生的重要原因[50]。有研究发现,急性胃肠道细菌感染3个月后前炎症因子IL-1β仍然高表达的患者PI-IBS患病率增高[51],提示细菌感染后持续的低水平炎症反应可能是PI-IBS的主要致病机制。

2.2 肠道微生态与炎症性肠病

炎症性肠病(Inflammatory bowel disease,IBD)是一类病因未明的慢性肠道疾病,主要包括Crohn病(Crohn’s disease,CD)和溃疡性结肠炎(Ulcerative colitis,UC)。近年来遗传易感[52]、肠道微生态和环境改变的相互作用被认为是IBD主要的病理生理过程,其中肠道菌群引起的肠粘膜异常免疫应答损伤尤为重要。

早在1994年就有报道婴儿时期肠道在恶劣卫生环境中的暴露会降低未来CD的患病概率[53],流行病学相关研究发现在卫生条件更好的发达国家,IBD的患病率比发展中国家更高[54],后人关于IBD病因的诸多研究亦提示IBD的环境危险因素正是减少感染性疾病传播的有利因素。猜测其机理可能是早期胃肠道缺乏病原体暴露,导致机体对肠腔内常驻菌群抗原的耐受不足[55],机体产生对肠道常驻菌群的异常免疫反应,最终导致肠道粘膜损伤。常驻肠道细菌参与的免疫应答损伤假说在许多早期的动物实验中都得以印证。研究发现,HLA-B27转基因大鼠可自发慢性结肠炎,而无菌环境饲养的HLA-B27大鼠则不会发生慢性结肠炎[56]。类似的研究还有T细胞受体基因缺陷的小鼠在无菌环境中不发生结肠炎、IL-2基因缺陷的小鼠可在10周龄时发生组织特点类似人类UC的炎症性肠病,而该小鼠在无菌环境饲养时并不发生此病变[57]等等。另有实验结果显示,肠道非致病性细菌可加重IL-10基因敲除小鼠的肠道炎症反应[58]。早期不吸收抗生素治疗可减轻粘膜损伤的研究也间接证明了肠道菌群参与了肠道的免疫炎性损伤[59-61]。

进一步的研究聚焦在不同菌种对IBD的不同影响。实验证明,在引起肠道免疫炎性损伤的细菌中,厌氧菌导致的炎性损伤最为严重[62],且以单核细胞渗出浸润为主。另有实验发现CD患者回肠末端粘膜及肉芽肿中粘附侵袭性大肠杆菌(Adherent invasive E.coli,AIEC)含量明显增多[63],而从 CD 患者中分离的AIEC在体外可诱发形成肉芽肿[64]。而乳酸杆菌可显著减少肠粘膜固有层中表达IL-2受体的T淋巴细胞数,并降低IL-6、TNF-α及而Bcl-2族蛋白的表达量,从而减轻炎症反应。亦有学者提出副结核分枝杆菌、幽门螺杆菌和病毒在IBD发病中可能起促进作用,但尚缺乏充分的实验证据。

IBD肠道粘膜免疫损伤的具体机制也是研究的重点之一,而异常免疫反应发生和黏液-上皮屏障被破坏是损伤机制的两个核心环节。研究发现无菌小鼠的浆细胞、淋巴滤泡、T细胞和Paneth细胞减少,产生的粘膜IgA也减少,而IBD患者肠道粘膜组织中产生IgG的淋巴细胞较对照组显著增多[65]。正常的胃肠道免疫排异反应主要以产生IgA抗体为主且局限在上皮表面,并不会导致组织的炎性损伤,但异常的IgG抗体可形成免疫复合物激活补体,引起完全免疫应答。最近有研究发现一些细菌通过与癌胚抗原相关细胞黏附分子-6(Carcinoembryonic antigen associated cell adhesion molecule-6,CEACAM-6)作用黏附至粘膜上并侵袭入上皮细胞,诱导TNF-α分泌并启动后续免疫反应[66],还有研究表明多形拟杆菌作为T样受体传导通路的下游信号可激活NF-κB31启动异常免疫反应。另一些细菌则可通过抑制核因子-κB(Nuclear factor-κB,NF-κB)的激活抑制免疫反应的发生。通过上述异常免疫应答导致肠道黏液-上皮屏障的破坏,进而导致IBD的发生。动物实验证明,正常菌群可增加杯状细胞的黏液分泌,构成黏液-上皮屏障的重要部分,肠道菌群失调使黏液分泌减少,让肠道上皮直接暴露在损伤因子下,如肠道有毒代谢产物等等[67]。另外,正常肠道菌群通过增加相关蛋白的表达可加强上皮细胞间的紧密连接[68],而上皮穿透性增加是严重IBD的特征之一[69]。

另外,随着肠道上皮和肠道菌群模式作用的发现,与IBD发病相关的信号传导通路也逐渐被了解,而这些传到通路与结直肠癌的发生也有一定关系,下文将进一步总结相关研究的结果。

2.3 肠道微生态与肠道肿瘤

结直肠癌(Colorectal cancer,CRC)在发达国家的发概率高发展中国家,除了基因和环境因素,IBD发病率的差差异也是导致CRC发病率差异的原因之一,长期受炎性刺激的人,如IBD患者,在确诊10年后发生CRC的危险比对照组高1%/年[70]。前文已概述肠道微生态在IBD病理生理过程中的重要作用,但越来越多的研究证明,肠道微生态不仅通过参与IBD的病理生理过程间接结作用于CRC的发病过程[71],更通过肠道微生物代谢产生致癌物质直接邮到肿瘤发生。

自上个世纪60年代起至今,有许多动物实验研究都发现,一些外源或内源性物质,通过非胃肠道途径给药或者采用无菌小鼠胃肠道给药并没有致癌作用,但通过胃肠道给予有胃肠道菌群的小鼠时,该物质则可被微生物分泌酶催化转换成具有致癌作用的产物,通过诱发胃肠道上皮细胞基因突变等途径导致肿瘤发生。如外源性的苏铁素可通过小鼠肠道微生物分泌的β-葡萄糖苷酶转换成具有致癌作用的非结合甲基氧化偶氮甲醇[72],又如进入肠道的胆盐在肠道厌氧菌群如脆弱拟杆菌的作用下,通过去结合及脱羟作用生成可溶性更差的胆盐,这些胆盐无法参与肠肝循环,经生化反应后形成有致癌作用的去氧胆酸[73,74]。其它与结直肠肿瘤发生有关的肠道微生物代谢酶包括β-葡萄糖醛酸酶、硫酸酯酶、β-丰乳糖酶、β-硝基还原酶、偶氮还原酶及胆固醇脱氢酶等[75]。

但并非所有的肠道菌群都会因为自身代谢活动参与CRC的发生。早在1971年就有研究发现肠道微生态中类杆菌增多与结肠癌发生有关。后陆续发现,结肠癌与结肠息肉患者肠道中双歧杆菌和乳酸杆菌数量明显减少,而肠球菌、类杆菌和酵母菌数量增多[76]。对肠道微生态中不同菌种的进一步动物实验研究发现,分泌B.脆弱毒素(Bacteroides fragilis toxin,BFT)的产肠毒素脆弱类杆菌(Enterotoxigenic Bacteroides fragilis,ETBF)可诱发小鼠多种肠道新生物[77],而拟杆菌的普通亚型却可通过诱发IL-10基因敲除小鼠肠道的低水平炎症减少CRC的发生[78]。证实肠道微生态中不同菌种可能促进、也可能抑制CRC的发生发展,可能与不同菌种产生的肿瘤相关代谢酶不同有关。

3 联系与差别

不难发现,IBS、IBD和CRC的发生均和肠道微生态失调引起异常免疫反应等机体正常生理功能紊乱相关。于是有学者提出,IBS、IBD和CRC并非完全独立的肠道疾病,而肠道微生态正是三者之间最关键的连接点[79,80]!特别是当PI-IBS和IBD相关的CRC这两个概念提出后,PI-IBS、IBD和IBD相关的CRC似乎更像是同一疾病的不同阶段。但进一步的研究发现,三者不仅是量的不同,更有着质的不同,其关系并非疾病的连续变化这么简单。

PI-IBS虽然也存在着低水平的炎症反应,但参与炎症反应的细胞及相关细胞因子种类与IBD有很大不同[81],另外,中枢和外周神经系统的相互作用在IBS的发病中起重要作用,但IBD受中枢神经系统的影响微乎其微,再次,对IBS和IBD的具体菌种分析结果也提示两者的主要致病菌谱并不一致。然而仍有不少报道称IBD患者中既往很多都曾出现IBS症状[82],且近期一项流行病学研究发现,IBD患者的一级亲属中IBS患者较正常对照组明显增多[83]。因此,尽管更多证据提示IBS和IBD并非同一疾病,但IBS与IBD之间仍然可能存在着直接或间接的关联,比如IBS是否是IBD的危险因素之一等等,这些问题尚有待进一步研究证实。

随着微生物与肠道上皮细胞模式受体相互作用的机制被发现,IBD和CRC之间“共同”的信号传导通路为IBD和CRC的密切联系提供了除流行病学证据外的、更为确切的分子依据。研究最为热门的,当属对IBD和CRC发展起阻碍作用的NOD1[84]和NLRP3[85]通路,以及起促进炎症和肿瘤发生作用的TLR/MyD[88]通路[87]。尽管如此,仍有不少动物实验结果发现慢性炎症也可能对肿瘤的发生起阻碍作用[78],而且事实上,有近80%的IBD患者并不会发展成CRC[87]。综合前述肠道微生物代谢活动可直接诱导CRC发生的结论,目前较为一致的意见是,IBD可能是肠道微生态与CRC之间的联系纽带之一,但并不是唯一的联系。IBD与CRC之间的绝对因果关系尚需考证。

而另一项关于IBS和CRC的Cohort研究发现,在IBS诊断后的第一个十年里,CRC的发病率较对照组有所下降[88],提示IBS可能是CRC的保护性因素,但尚没有其他任何证据证明IBS与CRC之间有直接关系。

4 结论

综上所述,随着肠道微生物的基因构成及其与肠道上皮的相互作用模式被逐步揭晓,学者对肠道微生态与人类肠道疾病之间关系的探索又迈入了一个新的阶段。然而要完全弄清肠道微生态复杂的结构与功能、为相关疾病的诊断和治疗寻找新的突破口,还需要更多的努力。

[1] Famularo G,Trinchieri V and De Simone C.Inflammatory bowel disease[J].The New England journal of medicine,2002,347:1982-1984.

[2] Bush TG,Savidge TC,Freeman TC,et al.Fulminant jejunoileitis following ablation of enteric glia in adult transgenic mice[J].Cell,1998,93:189-201.

[3] Cabarrocas J,Savidge TC and Liblau RS.Role of enteric glial cells in inflammatory bowel disease[J].Glia,2003,41:81-93.

[4] Steinkamp M,Geerling I,Seufferlein T,et al.Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells[J].Gastroenterology,2003,124:1748-1757.

[5] Zhang DK,He FQ,Li TK,et al.Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis [J].The Journal of pathology,2010,222:213-222.

[6] Airaksinen MS and Saarma M.The GDNF family:signalling,biological functions and therapeutic value[J].Nature reviews Neuroscience,2002,3:383-394.

[7] Vargas-Leal V,Bruno R,Derfuss T, Krumbholz M,Hohlfeld R and Meinl E.Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells[J].Journal of immunology,2005,175:2301-2308.

[8] Dvorak AM,Monahan RA,Osage JE and Dickersin GR.Crohn's disease:transmission electron microscopic studies.II.Immunologic inflammatory response. Alterations of mast cells,basophils,eosinophils,and the microvasculature[J].Human pathology,1980,11:606-619.

[9] King T,Biddle W,Bhatia P,Moore J and Miner PB,Jr.Colonic mucosal mast cell distribution at line of demarcation of active ulcerative colitis[J].Digestive diseases and sciences,1992,37:490-495.

[10] He SH.Key role of mast cells and their major secretory products in inflammatory bowel disease[J].World journal of gastroenterology:WJG,2004,10:309-318.

[11] Arseneau KO,Pizarro TT and Cominelli F.Discovering the cause of inflammatory bowel disease:lessons from animal models[J].Current opinion in gastroenterology,2000,16:310-317.

[12] Araki Y,Andoh A,Fujiyama Y and Bamba T.Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats[J].Clinical and experimental immunology,2000,119:264-269.

[13] Douglas JT.Adenoviral vectors for gene therapy[J].Molecular biotechnology,2007,36:71-80.

[14] Gurish MF,Ghildyal N,Arm J,et al.Cytokine mRNA are preferentially increased relative to secretory granule protein mRNA in mouse bone marrow-derived mast cells that have undergone IgE-mediated activation and degranulation [J].Journal of immunology,1991,146:1527-1533.

[15] Mudter J and Neurath MF.Il-6signaling in inflammatory bowel disease:pathophysiological role and clinical relevance[J].Inflammatory bowel diseases,2007,13:1016-1023.

[16] Taniguchi K and Karin M.IL-6and related cytokines as the critical lynchpins between inflammation and cancer[J].Seminars in immunology,2014,26(1):54-74.

[17] Allocca M,Jovani M,Fiorino G,Schreiber S and Danese S.Anti-IL-6treatment for inflammatory bowel diseases:next cytokine,next target[J].Current drug targets,2013,14:1508-1521.

[18] Bischoff SC,Lorentz A,Schwengberg S,Weier G,Raab R and Manns MP.Mast cells are an important cellular source of tumour necrosis factor alpha in human intestinal tissue[J].Gut,1999,44:643-652.

[19] Gibbs BF,Wierecky J,Welker P,Henz BM,Wolff HH and Grabbe J.Human skin mast cells rapidly release preformed and newly generated TNF-alpha and IL-8following stimulation with anti-IgE and other secretagogues[J].Experimental dermatology,2001,10:312-320.

[20] Kulczycki A,Jr.,Isersky C and Metzger H.The interaction of IgE with rat basophilic leukemia cells.I.Evidence for specific binding of IgE [J].The Journal of experimental medicine,1974,139:600-616.

[21] Barsumian EL,Isersky C,Petrino MG and Siraganian RP.IgE-induced histamine release from rat basophilic leukemia cell lines:isolation of releasing and nonreleasing clones[J].European journal of immunology,1981,11:317-323.

[22] Wu Z,Pearson A and Oliveira D.Characterization of cis-regulatory elements conferring mercury-induced interleukin-4 gene expression in rat mast cells:a role for signal transducer and activator of transcription 6and TATA box binding sites[J].Immunology,2009,127:530-853.

[23] Lisboa FA,Peng Z,Combs CA and Beaven MA.Phospholipase d promotes lipid microdomain-associated signaling events in mast cells[J].Journal of immunology,2009,183:5104-5112.

[24] Bourdu S,Dapoigny M,Chapuy E,et al.Rectal instillation of butyrate provides a novel clinically relevant model of non-inflammatory colonic hypersensitivity in rats[J].Gastroenterology,2005,128:1996-2008.25.LV.H and JI.G.Commensal host-bacterial relationships in the gut.[J].Science,2001,292:1115–1158.

[26] PJ.T,RE.L and M.H.The human microbiome project.[J].Nature,2007,449:804-810.

[27] J.Q,R.L and J.R.A human gut microbial gene catalogue established by metagenomic sequencing.[J].Nature,2010,464:59-65.

[28] PJ.T,M.H and T.Y.A core gut micro-biome in obese and lean twins.[J].Nature,2009,457:480-484.

[29] TB.G,SJ.vV and A.E.Self-and nonself-recognition by C-type lectins on dendritic cells[J].Annu Rev Immunol,2004,22:33-54.

[30] S.R-N and R.M.Innate immune recognition of the indigenous microbial flora[J].Mucosal Immunol,2008,I(suppl I):S10-S14.

[31] LV.H.Bacterial contributions to mammalian gut development[J].Trends Microbiol,2004,12:129-134.

[32] TS.S,LV.H and JI.G.Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J].Proc Natl Acad Sci U S A,2002,99:15451-1545.

[33] PA.C,JR.C and N.S.Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J].Proc Natl Acad Sci U S A,2009,106:11276-11281.

[34] AV.C.Influence of microbial environment on autoimmunity.Nat Immunol.2010;11:28-35.

[35] PJ.T,RE.L and MA.M.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Proc Natl Acad Sci U S A,2006,444:1027-1031.

[36] ME.D,RH.B and A.T.Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulinresistant mice[J].Proc Natl Acad Sci U S A,2006,103:12511-12516.

[37] L.W,RE.L and PY.V.Innate immunity and intestinal microbiota in the development of Type 1diabetes[J].Nature,2008,455:1109-1113.

[38] S.A-R,LA.J and MI.K.Stimulation of TLR2and TLR4 differentially skews the balance of T cells in a mouse model of arthritis[J].J Clin Invest,2008,118:205-216.

[39] G B,V S,G B,C C,G dn and r dG.Interactions between commensal bacteria and gut sensorimotor function in health and disease..Am J Gastroenterol.2005;100:2560-2568.

[40] TS K,M E and JO H.Abnormal colonic fermentation in irritable bowel syndrome[J].Lancet,1998,352:1187-1189.

[41] Podolsky DK.Inflammatory bowel disease [J].The New England journal of medicine,2002,347:417-429.

[42] M P,D W and D H.A link between irritable bowel syndrome and fibromyalgia may be related to findings on lactulose breath testing[J].Ann Rheum Dis,2004,63:450-452.

[43] M P,S C,EJ C,S P and Y K.Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas:sub-analysis of a double-blind randomized controlled study [J].Dig Dis Sci,2006,51:1297-1301.

[44] M P,S P,J M,SV K and Y K.The effect of a nonabsorbed antibiotic(rifaximin)on the symptoms of the irritable bowel syndrome:a randomized trial[J].Ann intern Med,2006,145:557-563.

[45] AC F,BM S,J T and P M.Small intestinal bacterial overgrowth in irritable bowel syndrome:systematic review and meta-analysis [J].Clin Gastroenterol Hepatol,2009,7:1279-1286.

[46] A B,A C,F D and G FEP.The fecal microbial population in the irritable bowel syndrome[J].Microbiology,1982,5:185-194.

[47] A S,M K and M O.Alteration of bacterial concentration in colonic biopsies from patients with irritable bowel syndrome(IBS)[J].Gastroenterology,1999,116:A1.

[48] J M,L M and K K.Composition and temporal stability of gastrointestinal microbiotain irritable bowel syndrome a longitudinal study in IBS and control subjects[J].Immunol Med Microbiol,2005,43:213-222.

[49] A K,L K-K,H M,T r,L Pi and J C.The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects[J].Gastroenterology,2007,133:24-33.

[50] M T,T K and JK M.Systematic review and meta-analysis:the incidence and prognosis of post-infectious irritable bowel syndrome[J].Aliment Pharmacol Ther,2007,26:535-544.

[51] R S and K G.Infection,inflammation,and the irritable bowel syndrome[J].dig Liv dis,2009,41:844-849.

[52] B K,A G and RJ X.Genetics and pathogenesis of inflammatory bowel disease[J].Nature,2011,474:307-317.

[53] AE G,MD H,RH G and D SEC.Inflammatory bowel disease and domestic hygiene in infancy[J].Lancet,1994,343:766-767.

[54] NP T,SM M,ME W and AJ PRW.Early determinants of inflammatory boweldisease:use of two national longitudinal birth cohorts[J].EurJGastroenterolHepatol,2000,12:25-30.

[55] P.B,TS.H,K.K,et al.Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes[J].Gastroenterology,1989,97:1562-1584.

[56] JD.T,JA.R,JT.C,et al.The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats[J].J Exp Med,1994,180:2359-2364.

[57] Sadlack B MH,Schorle H,Schimpl A,Feller A & Horak I.Ulcerative colitis-like disease in mice with a disrupted interleukin-2gene[J].Cell,1993,75:253-261.

[58] R.Kh,J.Lh,D.R and W RKMl.Interleukin-10-deficient mice develop chronic enterocolitis[J].Cell,1993,75:263-274.

[59] S V,J V,F G,A S,F T and E C.Role of intestinal microflora in chronic inflammation and ulceration of the rat colon[J].Gut,1994,35:1090-1097.

[60] A S,J W and V L-B.Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease[J].J Clin Microbiol,2005,43:3380-3389.

[61] SS K,SM B and LA N.An antibiotic-responsive mouse model of fulminant ulcerative colitis[J].PLoS Med,2008,5:e41.

[62] M.M,A.S,F.G and E.C.Stimulation of transforming growth factor-1by enteric bacteria in the pathogenesis of rat intestinal fibrosis[J].Gastroenterology,1998,114:519-526.

[63] A.DM,C.N and N.B.Presence of adherent Escherichia coli.in ileal mucosa strains of patients with Crohn's disease[J].Gastroenterology,1998,115:1405-1413.

[64] S.M,A.V and F.L.Adherent-invasive Escherichia coli i-solated from Crohn's disease patients induce granulomas in vitro[J].Cell Microbiol,2007,9:1252-1261.

[65] P.B,TS.H,K.K,et al.Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes[J].Gastroenterology,1989,97:1562-1584.

[66] N.B,FA.C and AL.G.CEACAM6acts as a receptor for adherent invasive E.coli supporting ileal mucosa colonization in Crohn disease[J].J Clin Invest,2007,117:1566-1574.

[67] R H and H C.The influence of colonizing micro-organisms on development of crypt architecture in the neonatal mouse colon[J].Acta Anat(Basel),1990,137:137-140.

[68] S U,A S and U D.Probiotic Escherichia coli Nissle 1917inhibits leaky gut by enhancing mucosal integrity [J].PLoS One,2007,2:e1308.

[69] U S,H L and A C.Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation [J].Ann N Y Acad Sci,2006,1072:262-275.

[70] Chambers.WM,Warren.BF,Jewell.DP and Mortensen.NJ.Cancer surveillance in ulcerative colitis[J].Br J Surg,2005,92:928-936.

[71] Goel A,Mittal A,Evstatiev R,et al.In vivo effects of mesalazine or E.coli Nissle 1917on microsatellite instability in ulcerative colitis[J].Aliment PharmacolTher ,2009,30:634-642.

[72] GL L.Carcinogenic effects of cycad meal and cycasin,methylazoxymethanol glycoside,in rats and effects of cycasin in germfree rats[J].Fed Proc,1964,23:1386-1388.

[73] MJ.H.Bile flow and colon cancer[J].Mutat Res,1990,238:3130-3320.

[74] A P,J X and G L.Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53[J].Int J Biochem Cell Biol,2001,33:193-203.

[75] Rowland and R I.The Role of the Gastrointestinal Microbiota in Colorectal Cancer [J].Current Pharmaceutical Design,2009,15:1524-157.

[76] R.M and OM.J.Dietary fibre,transit-time,faecal bacteria,steroids,and colon cancer in two Scandinavian populations[J].Lancet,1977,30:207-211.

[77] Wu S,Rhee KJ,Albesiano E,et al.A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17Tcell responses[J].Nat Med,2009,15:1016-1022.

[78] M.Joshua JMU,M.Mühlbauer,H.H.Herfarth,T.C.Rubinas,and G.S.Jones CJ.Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility[J].PLoS One,2009,4:e6026.

[79] Quigley EMM.Commensal bacteria:the link between IBS and IBD?[J].Curr Opin Clin Nutr Metab Care,2011,14:497-503.

[80] C.J and Jobin.C.The Struggle Within:Microbial Influences on Colorectal Cancer[J].Inflamm Bowel Dis,2011,17:396-409.

[81] J.K,C.OM and L.OM.Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease:a real association or reflection of occult inflammation?[J].Am J Gastroenterol,2010,105:1789-1884.

[82] T.B,I.C and L.G.The Manitoba Inflammatory Bowel Disease Cohort Study:prolonged symptoms before diagnosis:how much is irritable bowel syndrome?[J].Clin Gastroenterol Hepatol,2006,4:614-620.

[83] Aguas M,Garrigues V and Bastida G.Prevalence of irritable bowel syndrome (IBS)in first-degree relatives of patients with inflammatory bowel disease(IBD)[J].Journal of Crohn's and Colitis,2011,5:227-233.

[84] Chen GY,Shaw MH,Redondo G,et al.The innate immune receptor Nod1protects the intestine from inflammation-induced tumorigenesis[J].Cancer Res,2008,68:10060-10067.

[85] Rogers AB,Herfarth HH,Jobin C,Ting JP.The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis associated cancer[J].J Exp Med,2010,207:1045-1056.

[86] Rakoff-Nahoum S,Medzhitov R.Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88[J].Science,2007,317:124-127.

[87] Eaden JA,Abrams KR,Mayberry JF.The risk of colorectal cancer in ulcerative colitis:a meta-analysis[J].Gut,2001,48:526-535.

[88] N rgaard M,Farkas DK,Pedersen L,et al.Irritable bowel syndrome and risk of colorectal cancer:a Danish nationwide cohort study[J].The British Journal of Cancer,2011,104:1202-1206.

猜你喜欢
胃肠道菌群肠道
肠道脏了翻出来洗洗
大自然探索(2024年1期)2024-03-19 19:01:03
体外仿生胃肠道模型的开发与应用
科学(2022年4期)2022-10-25 02:43:06
“云雀”还是“猫头鹰”可能取决于肠道菌群
中老年保健(2022年2期)2022-08-24 03:20:50
70%的能量,号称“肠道修复菌之王”的它,还有哪些未知待探索?
当代水产(2021年10期)2022-01-12 06:20:42
夏季谨防肠道传染病
保健医苑(2021年7期)2021-08-13 08:47:54
胃肠道间质瘤的CT诊断价值
常做9件事肠道不会差
今日农业(2020年22期)2020-12-14 16:45:58
“水土不服”和肠道菌群
科学(2020年4期)2020-11-26 08:27:06
肉牛剩余采食量与瘤胃微生物菌群关系
咽部菌群在呼吸道感染治疗中的临床应用