翁光远
摘 要:磁控形状记忆合金(Magnetic Shape Memory Alloy)在磁场作用下所表现出的低能量诱发相变、大恢复应变、大输出应力、高响应频率和可精确控制的特性,使之有可能成为土木工程结构振动控制理想的驱动与传感材料。针对这一问题,论文通过描述MSMA材料的变形机制,以及磁场、应变、应力之间的函数关系,分析了磁控形状记忆合金在工程结构振动控制应用中需要解决的问题,提出了磁控形状记忆合金在工程结构振动控制领域中应用前景。
关键词:磁控形状记忆合金; 磁力性能; 振动控制; 本构关系
1.MSMA变形机理
磁控形状记忆合金既有传统记忆合金特有的热弹性马氏体相变,也有铁磁相和顺磁相之间的居里转变。磁控形状记忆合金的磁致应变可以通过两种方法获得[1],一种是由磁场诱发从母相到马氏体的相变(类似于应力诱发马氏体相变),这种情况一般需要非常大的磁场,例如需要1.29T的磁场才能诱发合金的马氏体相变;另外一种是铁磁控马氏体在磁场作用下的孪晶变体再取向(类似于应力促使马氏体孪晶再取向,与传统的磁致伸缩机制无关),这种情况需要的磁场比前者小得多,而且可以得到较大的应变量,例如在300K时,诱发Ni48.8Mn29.7Ga21.5合金马氏体变体再取向得到9.5%的磁致应变,只需0.13T的磁场。所以有关铁磁形状记忆合金的研究大多采用第二种机制,可以利用较小的磁场获得较大的应变。
在高对称性母相中,马氏体成核所产生的应变主要是通过滑移或者变形孪晶变体界面的移动来消除(可以大大降低马氏体与周围区域的应变能)。在有序合金中,与滑移变形相比,孪晶界面的移动不需破坏原子键,需要的能量较低,因此,孪晶界面的移动要比滑移更容易发生。孪晶界面移动实现的孪晶变体的择优取向将产生较大的宏观应变。
磁控形状记忆效应的必要条件是马氏体的各向异性能大于孪晶界移动所需的能量,而且易磁化方向在孪晶界两边不同,在这种情况下施加磁场将在孪晶界两边产生Zeemna能的
差异 ,这个能量差异对孪晶界施加压力,因
而易磁化方向与外磁场方向相同的孪晶单变体将长大,磁场诱发孪晶界移动的结果是产生一个大的应变,这效应完全发生在磁控形状记忆合金的马氏体。
磁控形状记忆合金的形状记忆效应不是通过温度的改变而是通过磁场变换达到的,也就是说,在磁场作用下发生磁诱发相变,这个动作是瞬时进行的。所以,磁控形状记忆合金不仅具有普通形状记忆合金应变、应力大的优点,而且具有反应迅速、响应频率高的优点,可以应用于各种混合系统、定位系统、减震器、力/位移传感器、功率发生器等很多场合。
摘 要:磁控形状记忆合金(Magnetic Shape Memory Alloy)在磁场作用下所表现出的低能量诱发相变、大恢复应变、大输出应力、高响应频率和可精确控制的特性,使之有可能成为土木工程结构振动控制理想的驱动与传感材料。针对这一问题,论文通过描述MSMA材料的变形机制,以及磁场、应变、应力之间的函数关系,分析了磁控形状记忆合金在工程结构振动控制应用中需要解决的问题,提出了磁控形状记忆合金在工程结构振动控制领域中应用前景。
关键词:磁控形状记忆合金; 磁力性能; 振动控制; 本构关系
1.MSMA变形机理
磁控形状记忆合金既有传统记忆合金特有的热弹性马氏体相变,也有铁磁相和顺磁相之间的居里转变。磁控形状记忆合金的磁致应变可以通过两种方法获得[1],一种是由磁场诱发从母相到马氏体的相变(类似于应力诱发马氏体相变),这种情况一般需要非常大的磁场,例如需要1.29T的磁场才能诱发合金的马氏体相变;另外一种是铁磁控马氏体在磁场作用下的孪晶变体再取向(类似于应力促使马氏体孪晶再取向,与传统的磁致伸缩机制无关),这种情况需要的磁场比前者小得多,而且可以得到较大的应变量,例如在300K时,诱发Ni48.8Mn29.7Ga21.5合金马氏体变体再取向得到9.5%的磁致应变,只需0.13T的磁场。所以有关铁磁形状记忆合金的研究大多采用第二种机制,可以利用较小的磁场获得较大的应变。
在高对称性母相中,马氏体成核所产生的应变主要是通过滑移或者变形孪晶变体界面的移动来消除(可以大大降低马氏体与周围区域的应变能)。在有序合金中,与滑移变形相比,孪晶界面的移动不需破坏原子键,需要的能量较低,因此,孪晶界面的移动要比滑移更容易发生。孪晶界面移动实现的孪晶变体的择优取向将产生较大的宏观应变。
磁控形状记忆效应的必要条件是马氏体的各向异性能大于孪晶界移动所需的能量,而且易磁化方向在孪晶界两边不同,在这种情况下施加磁场将在孪晶界两边产生Zeemna能的
差异 ,这个能量差异对孪晶界施加压力,因
而易磁化方向与外磁场方向相同的孪晶单变体将长大,磁场诱发孪晶界移动的结果是产生一个大的应变,这效应完全发生在磁控形状记忆合金的马氏体。
磁控形状记忆合金的形状记忆效应不是通过温度的改变而是通过磁场变换达到的,也就是说,在磁场作用下发生磁诱发相变,这个动作是瞬时进行的。所以,磁控形状记忆合金不仅具有普通形状记忆合金应变、应力大的优点,而且具有反应迅速、响应频率高的优点,可以应用于各种混合系统、定位系统、减震器、力/位移传感器、功率发生器等很多场合。
摘 要:磁控形状记忆合金(Magnetic Shape Memory Alloy)在磁场作用下所表现出的低能量诱发相变、大恢复应变、大输出应力、高响应频率和可精确控制的特性,使之有可能成为土木工程结构振动控制理想的驱动与传感材料。针对这一问题,论文通过描述MSMA材料的变形机制,以及磁场、应变、应力之间的函数关系,分析了磁控形状记忆合金在工程结构振动控制应用中需要解决的问题,提出了磁控形状记忆合金在工程结构振动控制领域中应用前景。
关键词:磁控形状记忆合金; 磁力性能; 振动控制; 本构关系
1.MSMA变形机理
磁控形状记忆合金既有传统记忆合金特有的热弹性马氏体相变,也有铁磁相和顺磁相之间的居里转变。磁控形状记忆合金的磁致应变可以通过两种方法获得[1],一种是由磁场诱发从母相到马氏体的相变(类似于应力诱发马氏体相变),这种情况一般需要非常大的磁场,例如需要1.29T的磁场才能诱发合金的马氏体相变;另外一种是铁磁控马氏体在磁场作用下的孪晶变体再取向(类似于应力促使马氏体孪晶再取向,与传统的磁致伸缩机制无关),这种情况需要的磁场比前者小得多,而且可以得到较大的应变量,例如在300K时,诱发Ni48.8Mn29.7Ga21.5合金马氏体变体再取向得到9.5%的磁致应变,只需0.13T的磁场。所以有关铁磁形状记忆合金的研究大多采用第二种机制,可以利用较小的磁场获得较大的应变。
在高对称性母相中,马氏体成核所产生的应变主要是通过滑移或者变形孪晶变体界面的移动来消除(可以大大降低马氏体与周围区域的应变能)。在有序合金中,与滑移变形相比,孪晶界面的移动不需破坏原子键,需要的能量较低,因此,孪晶界面的移动要比滑移更容易发生。孪晶界面移动实现的孪晶变体的择优取向将产生较大的宏观应变。
磁控形状记忆效应的必要条件是马氏体的各向异性能大于孪晶界移动所需的能量,而且易磁化方向在孪晶界两边不同,在这种情况下施加磁场将在孪晶界两边产生Zeemna能的
差异 ,这个能量差异对孪晶界施加压力,因
而易磁化方向与外磁场方向相同的孪晶单变体将长大,磁场诱发孪晶界移动的结果是产生一个大的应变,这效应完全发生在磁控形状记忆合金的马氏体。
磁控形状记忆合金的形状记忆效应不是通过温度的改变而是通过磁场变换达到的,也就是说,在磁场作用下发生磁诱发相变,这个动作是瞬时进行的。所以,磁控形状记忆合金不仅具有普通形状记忆合金应变、应力大的优点,而且具有反应迅速、响应频率高的优点,可以应用于各种混合系统、定位系统、减震器、力/位移传感器、功率发生器等很多场合。