数字离子阱质谱仪低质量截止值的改进方法

2014-07-10 21:48徐福兴等
分析化学 2014年6期

徐福兴等

摘 要 本研究在实验室自制的线形数字离子阱质量分析器上,通过改变数码电源的频率扫描方式,在CID过程中,通过扫描数字束缚方波电源的频率和数字激发方波的频率实现母体解离。例如对于利血平母体离子,当将离子数字束缚方波频率从500 kHz扫描到560 kHz,可以测量到低质荷比的碎片离子,成功实现了串级质谱分析的低质量碎片离子的分析。通过与利血平三重四极质谱串级质谱分析实验结果的比较,发现可以在数字离子阱质谱仪上获得与三重四极质谱相同的串级质谱测量结果。结果表明,本方法可以用于低质量离子的测量,克服了传统离子阱质谱进行串级质谱分析的一个主要难点,显著提高数字离子阱质谱的性能。

关键词 离子阱质谱; 数字离子阱; 串级质谱; 低质量截止值; 频率扫描; 质量范围

1 引 言

质谱仪作为一种可以进行快速、高灵敏化学成分分析的科学仪器,应用领域越来越广泛,已成为现代科学研究,以及生命科学、环境污染、食品安全、航天、冶金、地质、法医等领域中不可或缺的科学工具[1~5]。

离子阱质谱是近年来被广泛应用的一种质谱仪。它除了具有其它质谱仪所共有的高灵敏度,高质量分辨能力外,还具有结构简单,体积小,使用方便等优点。离子存储和串级质谱分析是离子阱质谱的独特优点之一,它使得人们可以在一种单一的质谱仪上同时实现质谱分析和串级质谱分析,以同时获得有关样品组成和分子结构的多重信息[6~10]。此外,离子阱质谱由于其结构简单、易加工、能耗小、工作气压高、在单一阱中就能串级质谱功能等优势,推动了质谱小型化进程[3~5]。

离子阱质谱作串级质谱分析也存在明显缺陷:在分析串级质谱结果时,低于母体离子质荷比一定比值的碎片离子测量不到,即所谓的低质量截止值(Low mass cutoff, LMCO) [11~15]。近年来,改进低质量截止已成为离子阱质谱研究中的主要内容之一。Yang等[12]通过优化qz值的方法实现低质量数碎片离子的检测;Cunningham 等[13]采用假三重质谱分析的方法改进了低质量截止的效应;而Meany等[14]采用脉冲q值解离的方法同样实现了对离子阱串级质谱分析中低质量数碎片产物的有效检测。Racine 等[16]则通过采用热解离母体离子的办法降低离子测量低限。还有一些作者则采用光解离方法解离母体离子[17,18]。这些方法都可以有效地降低碎片离子测量过程中的低质量截止的效应,获得更多有关母体离子结构的信息。

本实验采用自制的线形数字离子阱质量分析器,通过改变数码电源的频率扫描方式,成功克服了离子阱质谱作串级质谱分析时所遇到的1/3低质量截止特性,实现了对串级质谱分析的低质量碎片离子的分析。通过与三重四极质谱串级质谱分析实验结果的比较,发现可以在数字离子阱质谱仪上获得与三重四极质谱相同的串级质谱测量结果。本方法解决了利用离子阱质谱进行串级质谱分析的一个主要传统难点,可以显著提高数字离子阱质谱的性能。

2 理论分析

离子阱质谱分析中的低质量截止值是指用离子阱质谱进行串级质谱分析时,如果碎片离子是经碰撞解离(Collisioninduced dissociation, CID) 方法产生的,则质荷比低于母体离子质荷比约1/3的碎片离子将无法被检测到,也常被称为三分之一定则。很显然,由于低质量截止值的限制,将会导致串级质谱分析中约1/3质量范围的碎片信息的丢失。在某些时候,低质量数离子信号的丢失将会直接影响分析小分子的结构和一些多肽的定量分析结果[12]。

报道的样品利血平和五肽经三重四极质谱的串级质谱分析结果,可以看到其解离得到的碎片离子峰测量结果完全一致。表明本研究所提出的降低离子阱质谱低质量截止值(即LMCO)的方法完全可行, 实现了在离子阱质量分析器中得到低质量数的碎片离子峰信息, 有助于对母离子峰的性能分析。

5 结 论

在离子阱质量分析器中,采用传统方法实现的碰撞诱导解离得到的利血平碎片谱图质量数一般只能测到m/z 365。本研究在数字方波驱动离子阱的基础上, 采用从低频往高频的扫描模式实现碰撞诱导解离,获得了利血平低质量数碎片峰,最低可低于m/z 174,同时五肽GlyGlyPheLeuTyr最低碎片峰达到m/z 120,获得了与三重四极质谱仪串级质谱同样的碎片峰分布。本方法有效克服了低质量截止值的限制,丰富了用离子阱质谱仪进行串级质谱分析的分子结构信息,明显提高了离子阱质量分析器串级质谱分析的性能。

References

1 Hager J M. Anal Bioanal Chem., 2004, 378(4): 845-850

2 Mayer P M, Poon C. Mass Spectrometry Review., 2009, 28(4) : 608-639

3 Wells J M, McLuckey S A. Biological Mass Spectrometry, 2005, 402: 148-185

4 Wang J. Mass Spectrometry Reviews., 2009, 28(1): 50-92

5 Robinson C V, Sali A, Baumeister W. Nature, 2007, 450(7172): 973-982

6 Schwartz J C, Senko M W, Syka J E P. Journal of the American Society for Mass Spectrometry, 2002, 13(6): 659-669

7 Hopfgartner G, Husser C, Zell M. Journal of Mass Spectrometry, 2003, 38(2): 138-150

8 Louris J N, Cooks R G, Syka J E P, Kelley P E, Stafford G C, Todd J F J. Anal. Chem., 1987, 59(13): 1677-1685

9 McLuckey S A. Journal of the American Society for Mass Spectrometry, 1992, 3(6): 599-614

10 Deng L, Kitova E N, Klassen J S. Journal of the American Society for Mass Spectrometry, 2013, 24(5): 988-996

11 Zhang M Y, Pace N, Kerns E H, Kleintop T, Kagan N, Sakuma T. Journal of Mass Spectrometry, 2005, 40(8): 1017-1029

12 Yang Y H, Lee K, Jang K S, Kim Y G, Park S H, Lee C S, Kim B G. Anal. Biochem., 2009, 387(1): 133-135

13 Cunningham C, Glish G L, Burinsky D J. Journal of the American Society for Mass Spectrometry, 2006, 17(1): 81-84

14 Meany D L, Xie H W, Thompson L V, Arriaga E H, Griffin T J. Proteomics., 2007, 7(7): 1150-1163

15 March R E. Quadrupole ion trap mass spectrometer, John Wiley & Sons. Inc.,Publication. New Jersey, 2005: 108

16 Racine A H, Payne A H, Remes P M, Glish G L. Anal. Chem., 2006, 28(13): 4609-4614

17 Payne A H, Glish G L. Anal Chem., 2001, 73(15): 3542-3548

18 Enyenihi A A, Griffiths J R, Glish G L. International Journal of Mass Spectrometry, 2011, 308(23): 260-264

19 Ding L, Brancia F L. Anal. Chem., 2006, 78: 1995

20 Ding L, Sudakov M, Brancia F L, Giles R, Kumashiro S. Journal of Mass Spectrometry, 2004, 39(5): 471-484

21 Wang L, Xu F X, Ding C F. Rapid Communications in Mass Spectrometry., 2012, 26(17): 2068-2074

22 LI XiaoXu, JIANG GongYu, DING Li, WANG YuanYuan, DING ChuanFan. Chinese J. Anal. Chem., 2009, 37(9): 1397-1402

李晓旭, 蒋公羽, 丁 力, 汪源源, 丁传凡. 分析化学, 2009, 37(9): 1397-1402

23 XU FuXing,WANG Liang, DING ChuanFan. The 13th National Conference on Chemical Dynamics, 2013: 38

徐福兴, 王 亮, 丁传凡. 第十三届全国化学动力学会议, 2013: 38

24 Song Q Y, Kothari S, Senko M A, Schwartz J C, Amy J W, Stafford G C, Cooks R G, Ouyang Z. Anal. Chem., 2006, 78(3): 718-725

25 Geddes K, Adamson G, Dube N, Crathern S, King R C. Rapid Communications in Mass Spectrometry., 2009, 23(9): 1303-1312

26 Brewer E, Henion J. Journal of Pharmaceutical Sciences., 1998, 87(4): 395-402

Improvement of Low Mass Cutoff Effect Using

Digital Ion Trap Technology

XU FuXing1, DING Li1, DAI XinHua2, FANG Xiang*2, DING ChuanFan*1

1(Department of chemistry and laser Chemistry Institute, Fudan University, Shanghai 200433, China)

2(National Institute of Metrology, Beijing 100081, China)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)