张平,李鹏飞(等)
摘要:为了分析蛋白质变性剂和金属离子对从中华皮蝇(Hypoderma sinense)幼虫中纯化的单体乳酸脱氢酶(LDH)活力的影响,分别用3种蛋白质变性剂[尿素、盐酸胍、十二烷基硫酸钠(SDS)]以及8种二价金属离子在体外处理纯化的中华皮蝇LDH,再测定其酶活力。结果表明,中华皮蝇LDH对蛋白质变性剂尿素有一定的耐受性,对SDS敏感;在1~20 mmol/L浓度范围内,大多数二价金属离子对LDH活力有不同程度的抑制作用,但3 mmol/L的Co2+对LDH活力有很强的促进作用,这不同于其他来源的LDH。该研究结果提示中华皮蝇LDH具有较高的抗变性能力,对高浓度Co2+的需求可能是其重要特征之一。
关键词:乳酸脱氢酶(LDH);中华皮蝇(Hypoderma sinense);金属离子;酶活力;蛋白质变性剂
中图分类号:S852.74+3 文献标识码:A 文章编号:0439-8114(2014)07-1609-03
In vitro Effects of Protein Denaturants and Metal Ions on Activities of Monomeric Lactate Dehydrogenase from Hypoderma sinense
ZHANG Ping,LI Peng-fei,JIN Su-yu,HUANG Lin,LIN Ya-qiu,ZHENG Yu-cai
(College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041,China)
Abstract: To study effects of three protein denaturants and eight metal ions on the activities of monomeric lactate dehydrogenase (LDH) purified from Hypoderma sinense larva, the purified LDH was incubated in vitro with urea, sodium dodecyl sulfate(SDS), guanidine hydrochloride and eight divalent metal ions, and then subjected to activity analysis. The results showed that Hypoderma sinense LDH had relative resistance to urea, but was sensitive to sodium dodecyl sulfate (SDS). Most metal ions had varied degrees of inhibition to LDH activity at concentrations from 1 to 20 mmol/L, while Co2+ increased LDH activity significantly at 3 mmol/L concentration, quite different from the LDH of other treats. It is indicated that Hypoderma sinense LDH had strong ability against denaturalization and its requirement for high concentration of Co2+ might be its one important property.
Key words: lactate dehydrogenase; Hypoderma sinense; metal ion; enzyme activity; protein denaturalization
乳酸脱氢酶(LDH,EC 1.1.1.27)是糖代谢中无氧酵解的关键酶,能催化丙酮酸和乳酸之间的转化,在能量代谢中发挥重要作用。在临床医学上,LDH被认为是潜在的药物靶点,用于治疗依赖于无氧代谢提供能量的疾病[1]。Marchat等[2]从一种线虫Molinema dessetae中纯化了LDH,并发现了其酶学性质与哺乳动物LDH的很多差异。最近,人们从寄生在牦牛皮下的中华皮蝇(Hypoderma sinense)幼虫中纯化了LDH并进行了酶动力学分析,发现中华皮蝇LDH为罕见的单体结构,对热、酸和HgCl2都很稳定,与其他动物相比对底物乳酸有更小的米氏常数[3]。研究酶的稳定性以及金属离子对酶活力的影响是酶学研究中的基础性和十分重要的工作[4,5]。为深入和全面了解中华皮蝇LDH的酶学特性,本研究分析了蛋白质变性剂和几种金属离子在体外对中华皮蝇LDH活力的影响。
1 材料与方法
1.1 样品的采集和LDH的纯化
试验用牛皮蝇二期或三期幼虫采自牦牛皮下。在四川省青白江区某屠宰场屠宰牦牛时采集牛皮蝇幼虫,经生理盐水清洗后用干冰保存带回实验室。这些幼虫用Otranto等[6]、刘浩浩等[7]建立的PCR-RFLP方法鉴定为中华皮蝇(H.sinense)幼虫。
按照Li等[3]的方法,从牦牛中华皮蝇幼虫中纯化LDH,主要过程包括:匀浆、热处理、HiTrapTM Blue HP亲和层析、Superdex 75凝胶过滤等。所获得的LDH经检测为电泳纯[3]。LDH对蒸馏水于4 ℃透析4 h(透析过程中多次更换蒸馏水,并连续轻轻搅拌),分装后的酶液于-80 ℃保存备用。
1.2 LDH活力的测定
LDH活力测定参照Marchat等[2]的动力学方法。反应体系1.55 mL,含0.2 mol/L Tris-HCl(pH 7.3)1.4 mL,6.6 mmol/L NADH 0.05 mL,30 mmol/L丙酮酸钠0.05 mL和纯化的LDH酶液0.05 mL。记录25 ℃条件下2 min内反应液A340 nm 的变化情况。1个单位的酶活力定义为在25 ℃条件下,每分钟催化1 μmol的辅酶(NADH)发生反应的酶量。试验控温采用德国Huber恒温水浴,比色采用具有酶动力学分析功能的DR2800型分光光度计(美国Hach公司)。
1.3 蛋白质变性剂和金属离子对中华皮蝇单体LDH活力的影响
分析了不同浓度的3种蛋白质变性剂即尿素、盐酸胍和SDS对LDH活力的影响。先将蛋白质变性剂(尿素的终浓度为0~3.0 mol/L,盐酸胍的终浓度为0~1.5 mol/L;SDS的终浓度为0~0.5 mol/L)与LDH酶液在25 ℃水浴中保温15 min后取出放置于冰上,再测定其酶活力。以对照管的LDH相对活力为100%,根据测定结果计算经不同浓度蛋白质变性剂处理后LDH的相对活力。
参照Guzik等[8]的方法分析金属离子对LDH活力的影响。试验所用的8种二价金属盐分别为CaCl2、ZnCl2、MnSO4、CuCl2、MgCl2、NiSO4、CoCl2、FeCl2,均为国产分析纯。取适量经过稀释的纯化LDH酶液,加入二价金属离子,使其终浓度分别为0(超纯水对照)、1、3、5、20 mmol/L,25 ℃水浴保温15 min,取出置于冰上,用于测定LDH活力。每个浓度3次重复。以对照管的LDH相对活力为100%,根据测定结果计算不同浓度二价金属离子处理后LDH的相对活力。
试验还采用金属螯合剂EDTA代替金属离子,观察其对LDH活力的影响,处理方法同上。
2 结果与分析
2.1 蛋白质变性剂对LDH活力的影响
由图1可见,两种常用的蛋白质变性剂(尿素和盐酸胍)在体外处理中华皮蝇单体LDH,均可降低LDH的活力(由于SDS对酶活力影响非常大,高浓度时完全抑制了酶活力,因此未列出相应的柱形图)。相对尿素而言,盐酸胍对LDH活力的影响更大。3.0 mol/L尿素处理后,LDH仍表现为约60%的残留活力,而1.5 mol/L盐酸胍处理后,LDH活力仅残留约8%。SDS对LDH的抑制效果明显高于尿素和盐酸胍,在浓度为0.062 5 mol/L时,LDH活力仅残留约2%。
2.2 二价金属离子对LDH活力的影响
由图2可见,8种二价金属离子在浓度为1~20 mmol/L范围内均对中华皮蝇单体LDH的活力有一定影响。绝大多数二价金属离子表现为对LDH活力有不同程度的抑制作用,并与浓度有一定关系,尤其是Cu2+和Fe2+在高浓度(20 mmol/L)时有较强的抑制作用,但Ni2+对LDH活力影响不大。值得注意的是,Co2+在3~20 mmol/L范围内对LDH活力有较强的促进作用,3 mmol/L的Co2+处理后,其LDH活力约相当于对照组的3.5倍。
另外,在纯化的LDH中加入EDTA,在1 mmol/L和3 mmol/L时,LDH活力分别下降至原来的59.2%和30.6%,提示金属离子对中华皮蝇单体LDH活力的重要性。
3 小结与讨论
通过对中华皮蝇幼虫中纯化的LDH研究表明,中华皮蝇LDH为单体结构,热稳定性强,对pH、HgCl2都不敏感,比一般动物来源的LDH稳定[3]。尿素和盐酸胍是典型的蛋白质变性剂,本试验结果显示,中华皮蝇LDH对尿素有一定的耐受性。即使是强变性剂盐酸胍,在0.5 mol/L条件下中华皮蝇LDH仍可保持约50%的活力,这进一步证实了LDH结构的稳定性。有研究表明,LDH经2 mol/L尿素处理2 min,肌肉来源的同工酶LDH5基本失去活性,但心脏来源的LDH1活力基本不受影响[9]。因此,中华皮蝇LDH在性质上可能更接近哺乳动物中的LDH1。SDS是一种强阴离子去污剂,能导致蛋白质变性。中华皮蝇LDH对SDS比较敏感,推测SDS能影响酶分子或活性中心的电荷分布,导致LDH构象变化(变性)从而显著影响其催化能力,这与已有报道相符[10]。SDS导致蛋白质变性的机制与尿素、盐酸胍不同。尿素和盐酸胍可破坏蛋白质分子中的氢键,也可能破坏蛋白质分子内部的疏水作用;而SDS中的疏水长链和带负电荷的硫酸根可分别作用于蛋白质分子内部的非极性基团和水分子,导致蛋白质变性。结合中华皮蝇LDH对pH不敏感[3]以及对尿素、盐酸胍较好的耐受性特征,推测疏水作用力在稳定中华皮蝇LDH空间结构中发挥了更重要的作用。
有关金属离子对酶活力的体外影响已经有非常多的报道。金属离子对有些酶是必需的,也可与酶蛋白的某些氨基酸残基结合,从而影响酶的活力。有研究表明,在0.5~2.5 mmol/L的浓度范围内,Fe3+、Cu2+、Ni2+和Co2+对LDH均有抑制作用,且抑制程度依次下降;试验还观察到,Co2+随着浓度升高对LDH的抑制作用反而下降,但遗憾的是试验没有分析更高浓度Co2+的作用[11];而汪勋清等[12]报道,Zn2+、Ca2+对LDH活力无影响,Mn2+有抑制作用,而Cu2+、Mg2+在低浓度时有微弱的促进作用。本试验结果与上述报道存在一些差异,可能与LDH结构不同有关。另外,不同研究采用的二价金属离子浓度、LDH的纯度及方法等的差异也可能会导致不同的试验结果。
本研究中Co2+在3 mmol/L时对LDH活力有较强的促进作用。作为重金属的Co2+对很多酶都有抑制作用[5,11],但也有不少酶需要Co2+或者可以被Co2+激活[13-16],其机制可能涉及Co2+与酶的氨基酸残基结合,影响酶的构象或活性中心;或类似碱性羧肽酶中,Co2+代替Zn2+作为酶的辅助因子[15]。D-木糖异构酶为四聚体,每个亚基中都含有两个必需的金属离子(包括Co2+)结合位点(1个结构位点和1个催化位点)[14]。由此可见,Co2+对酶活力的影响及相关的机制可能十分复杂。LDH并非金属酶类,有关Co2+对LDH活力的促进作用的机制尚不清楚。已有报道表明,Co2+对其他来源LDH活力的影响不同于本研究结果[11,12]。因此,中华皮蝇LDH活力被高浓度Co2+显著促进的特点,可能是该单体酶的特性之一。
参考文献:
[1] BROWN W M, YOWELL C A, HOARD A, et al. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites[J]. Biochemistry,2004,43(20):6219-6229.
[2] MARCHAT L, LOISEAU P M, PETEK F, et al. Purification and characterization of lactate dehydrogenase isoenzymes 1 and 2 from Molinema dessetae (Nematoda:Filarioidea)[J]. Parasitol Res,1996,82(8):672-680.
[3] LI P F, JIN S Y, HUANG L, et al. Purification and properties of a monomeric lactate dehydrogenase from yak Hypoderma sinense larva[J]. Exp Parasitol,2013,134(2):190-194.
[4] MOUNAJI K, VLASSI M, ERRAISS N E, et al. In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites[J]. Comp Biochem Physiol B Biochem Mol Biol,2003,135(2):241-254.
[5] WAI L,CHONG K, HO W S. Influence of heavy metals on Glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae[J]. Environ Toxicol Chem,2013,32(8):1882-1887.
[6] OTRANTO D, COLWELL D D, TRAVERSA D, et al. Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterization[J]. Med Vet Entomol,2003,17(3):316-325.
[7] 刘浩浩,李玉萍,黄志宏,等.牦牛牛皮蝇幼虫的快速PCR-RFLP鉴定[J].湖北农业科学,2012,51(7):1477-1480.
[8] GUZIK U, HUPERT-KOCUREK K, SALEK K, et al. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2[J]. World J Microbiol Biotechnol,2013,29(2):267-273.
[9] KARLSEN R L, N?覫RGAARD L, GULDBRANDSEN E B. A rapid method for the determination of urea stable lactate dehydrogenase on the 'Cobas Bio' centrifugal analyser[J]. Scand J Clin Lab Invest,1981,41(5):513-516.
[10] SANFORD K J, MEYER D J, MATHISON M J, et al. Selective inactivation of lactate dehydrogenase isoenzymes with ionic surfactants[J]. Biochemistry,1981,20(11):3207-3214.
[11] 蒋本国,刘长建,张 乐,等.金属离子对LDH的抑制作用与底物对其保护作用研究[J].高师理科学刊,2010,30(4):80-83.
[12] 汪勋清,高小霞.二价金属离子影响乳酸脱氢酶活性的单扫伏安研究[J].高等学校化学学报,1998,19(4):543-546.
[13] BRAUN T. The effect of divalent cations on bovine spermatozoal adenylate cyclase activity[J]. J Cyclic Nucleotide Res, 1975,1(6):271-281.
[14] VAN BASTELAERE P B, CALLENS M, VANGRYSPERRE W A, et al. Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases[J]. Biochem J,1992,286(Pt3):729-735.
[15] DEDDISH P A, SKIDGEL R A, ERDO S E G. Enhanced Co2+ activation and inhibitor binding of carboxypeptidase M at low pH. Similarity to carboxypeptidase H (enkephalin convertase)[J].Biochem J,1989,261(1):289-291.
[16] OHSHIMA N,YAMASHITA S,TAKAHASHI N,et al.Escherichia coli cytosolic glycerophosphodiester phosphodiesterase (UgpQ) requires Mg2+,Co2+,or Mn2+ for its enzyme activity[J]. J Bacteriol,2008,190(4):1219-1223.
参考文献:
[1] BROWN W M, YOWELL C A, HOARD A, et al. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites[J]. Biochemistry,2004,43(20):6219-6229.
[2] MARCHAT L, LOISEAU P M, PETEK F, et al. Purification and characterization of lactate dehydrogenase isoenzymes 1 and 2 from Molinema dessetae (Nematoda:Filarioidea)[J]. Parasitol Res,1996,82(8):672-680.
[3] LI P F, JIN S Y, HUANG L, et al. Purification and properties of a monomeric lactate dehydrogenase from yak Hypoderma sinense larva[J]. Exp Parasitol,2013,134(2):190-194.
[4] MOUNAJI K, VLASSI M, ERRAISS N E, et al. In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites[J]. Comp Biochem Physiol B Biochem Mol Biol,2003,135(2):241-254.
[5] WAI L,CHONG K, HO W S. Influence of heavy metals on Glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae[J]. Environ Toxicol Chem,2013,32(8):1882-1887.
[6] OTRANTO D, COLWELL D D, TRAVERSA D, et al. Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterization[J]. Med Vet Entomol,2003,17(3):316-325.
[7] 刘浩浩,李玉萍,黄志宏,等.牦牛牛皮蝇幼虫的快速PCR-RFLP鉴定[J].湖北农业科学,2012,51(7):1477-1480.
[8] GUZIK U, HUPERT-KOCUREK K, SALEK K, et al. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2[J]. World J Microbiol Biotechnol,2013,29(2):267-273.
[9] KARLSEN R L, N?覫RGAARD L, GULDBRANDSEN E B. A rapid method for the determination of urea stable lactate dehydrogenase on the 'Cobas Bio' centrifugal analyser[J]. Scand J Clin Lab Invest,1981,41(5):513-516.
[10] SANFORD K J, MEYER D J, MATHISON M J, et al. Selective inactivation of lactate dehydrogenase isoenzymes with ionic surfactants[J]. Biochemistry,1981,20(11):3207-3214.
[11] 蒋本国,刘长建,张 乐,等.金属离子对LDH的抑制作用与底物对其保护作用研究[J].高师理科学刊,2010,30(4):80-83.
[12] 汪勋清,高小霞.二价金属离子影响乳酸脱氢酶活性的单扫伏安研究[J].高等学校化学学报,1998,19(4):543-546.
[13] BRAUN T. The effect of divalent cations on bovine spermatozoal adenylate cyclase activity[J]. J Cyclic Nucleotide Res, 1975,1(6):271-281.
[14] VAN BASTELAERE P B, CALLENS M, VANGRYSPERRE W A, et al. Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases[J]. Biochem J,1992,286(Pt3):729-735.
[15] DEDDISH P A, SKIDGEL R A, ERDO S E G. Enhanced Co2+ activation and inhibitor binding of carboxypeptidase M at low pH. Similarity to carboxypeptidase H (enkephalin convertase)[J].Biochem J,1989,261(1):289-291.
[16] OHSHIMA N,YAMASHITA S,TAKAHASHI N,et al.Escherichia coli cytosolic glycerophosphodiester phosphodiesterase (UgpQ) requires Mg2+,Co2+,or Mn2+ for its enzyme activity[J]. J Bacteriol,2008,190(4):1219-1223.
参考文献:
[1] BROWN W M, YOWELL C A, HOARD A, et al. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites[J]. Biochemistry,2004,43(20):6219-6229.
[2] MARCHAT L, LOISEAU P M, PETEK F, et al. Purification and characterization of lactate dehydrogenase isoenzymes 1 and 2 from Molinema dessetae (Nematoda:Filarioidea)[J]. Parasitol Res,1996,82(8):672-680.
[3] LI P F, JIN S Y, HUANG L, et al. Purification and properties of a monomeric lactate dehydrogenase from yak Hypoderma sinense larva[J]. Exp Parasitol,2013,134(2):190-194.
[4] MOUNAJI K, VLASSI M, ERRAISS N E, et al. In vitro effect of metal ions on the activity of two amphibian glyceraldehyde-3-phosphate dehydrogenases: potential metal binding sites[J]. Comp Biochem Physiol B Biochem Mol Biol,2003,135(2):241-254.
[5] WAI L,CHONG K, HO W S. Influence of heavy metals on Glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae[J]. Environ Toxicol Chem,2013,32(8):1882-1887.
[6] OTRANTO D, COLWELL D D, TRAVERSA D, et al. Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterization[J]. Med Vet Entomol,2003,17(3):316-325.
[7] 刘浩浩,李玉萍,黄志宏,等.牦牛牛皮蝇幼虫的快速PCR-RFLP鉴定[J].湖北农业科学,2012,51(7):1477-1480.
[8] GUZIK U, HUPERT-KOCUREK K, SALEK K, et al. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2[J]. World J Microbiol Biotechnol,2013,29(2):267-273.
[9] KARLSEN R L, N?覫RGAARD L, GULDBRANDSEN E B. A rapid method for the determination of urea stable lactate dehydrogenase on the 'Cobas Bio' centrifugal analyser[J]. Scand J Clin Lab Invest,1981,41(5):513-516.
[10] SANFORD K J, MEYER D J, MATHISON M J, et al. Selective inactivation of lactate dehydrogenase isoenzymes with ionic surfactants[J]. Biochemistry,1981,20(11):3207-3214.
[11] 蒋本国,刘长建,张 乐,等.金属离子对LDH的抑制作用与底物对其保护作用研究[J].高师理科学刊,2010,30(4):80-83.
[12] 汪勋清,高小霞.二价金属离子影响乳酸脱氢酶活性的单扫伏安研究[J].高等学校化学学报,1998,19(4):543-546.
[13] BRAUN T. The effect of divalent cations on bovine spermatozoal adenylate cyclase activity[J]. J Cyclic Nucleotide Res, 1975,1(6):271-281.
[14] VAN BASTELAERE P B, CALLENS M, VANGRYSPERRE W A, et al. Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases[J]. Biochem J,1992,286(Pt3):729-735.
[15] DEDDISH P A, SKIDGEL R A, ERDO S E G. Enhanced Co2+ activation and inhibitor binding of carboxypeptidase M at low pH. Similarity to carboxypeptidase H (enkephalin convertase)[J].Biochem J,1989,261(1):289-291.
[16] OHSHIMA N,YAMASHITA S,TAKAHASHI N,et al.Escherichia coli cytosolic glycerophosphodiester phosphodiesterase (UgpQ) requires Mg2+,Co2+,or Mn2+ for its enzyme activity[J]. J Bacteriol,2008,190(4):1219-1223.