胡志军,赵素平
(1.广西师范大学数学与统计学院,桂林 541004;
2.重庆大学数学与统计学院,重庆 401331)
扰动变分不等式的序下半连续性
胡志军1,赵素平2
(1.广西师范大学数学与统计学院,桂林 541004;
2.重庆大学数学与统计学院,重庆 401331)
对向量优化准则下集值映射(SMVOR)半连续性和集优化准则下集值映射(SMSOR)序半连续性进行了研究。通过举例指出了SMVOR下半连续与SMSOR序下半连续没有关系,在一定条件下由SMVOR上半连续性得到了SMSOR序下半连续。重点讨论了集序关系意义下广义向量拟变分不等式(GVQVI)的序下半连续性。通过对集序关系意义下序下半连续的进一步研究,得到了扰动变分不等式问题的解集在空间上序下半连续的充分条件,并用不同方法证明了该充分条件。
集序关系;序下半连续;扰动变分不等式;半连续
Lions等建立了初期变分不等式理论,Giannessi在有限维空间中引入了向量变分不等式。基于向量优化的发展,向量变分不等式问题在理论和应用上日益完善[1-2],被广泛应用于工程、经济等领域。向量变分不等式的稳定性、适定性和半连续性等被广泛研究[3-5]。集优化问题是以函数的每一个像集作为一个整体来比较像集间的优劣关系。Kuroiwa在文献[6-7]中介绍了多种集序关系及其性质。Jahn在文献[8]中引入了新的集序关系,并给出了序下半连续的概念。Madeda在文献[9]中给出了集值映射在整个空间序半连续的条件。
3.1 扰动广义向量变分不等式模型
3.2 下面讨论≤l序关系意义下一种特殊的变分不等式问题
本文给出了变分不等式在集序关系意义下的表示,并用2种方法证明了扰动变分不等式在空间上≤l下半连续的充分条件,为继续研究集序关系意义下的变分不等式开拓了思路。
[1]Chen G Y,Li S J.Existence of Solutions for a Generalized Vector Quasivariational Inequality[J].Optim Theory Appl,1996,90 (1):321-334.
[2]Yang X Q,Goh C J.On Vector Variational Inequalities:Application to Vector Equilibria[J].Optim.Theory Appl,1997,95(2): 431-443.
[3]Li S J,Zhang W Y.Hadamard Well-posed Vector Optimization Problems[J].Optim Theory Appl,2010,46:383-393.
[4]曾静.向量优化及相关问题解的存在性和适定性研究[D].重庆:重庆大学,2011.
[5]陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报:自然科学版,2005,22(3):6-9.
[6]Kuroiwa D.On Set-valued Optimization[J].Nonlinear Anal,2001,47:1395-1400.
[7]Kuroiwa D.The natural Criteria in Set-valued Optimization[J].RIMS Kokyuroku,1998,1031:85-90.
[8]Jahn J,Ha T X D.New Order Relations in Set Optimization[J].Optim.Theory Appl,2011,148:209-236.
[9]Maeda T.On Optimization Problems with Set-valued Objective Maps:Existence and Optimality[Z].Optim Theory Appl,2011.
[10]Aubin J P,Ekland I.Applied Nonlinear Analysis[M].New York:NY,1984:518.
[11]Hogan W W.Point-to-set Maps in Mathematical Programming[J].SI AM Rev,1973,15:591-603.
(责任编辑 刘舸)
Lower Semicontinuity with Set-relations of Perturbed Generalized Vector Quasivational Inequality Problems
HU Zhi-jun1,ZHAO Su-ping2
(1.College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China; 2.College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China)
The semicontinuity of set-valued mapping under set-valued optimization rules and the lower semicontinuity with set-relations under set optimization rules have been studied.By some examples,one can find the semicontinuity of set-valued mapping under set-valued optimization rules has no relations with the lower semicontinuity with set-relations under set optimization rules.It is easy to get the relation between the upper semicontinuity with the lower semicontinuity with set-relations.In addtition,the key point is discussing the lower semicontinuity with set-relations of GVQVI.By analyzing the lower semicontinuity with set-relations,one can conclude the sufficient conditions of the lower semicontinuity with set-relations of perturbed GVQVI and prove the sufficient condition by two different ways.
set-relations;lower semicontinuity with set-relations;perturbed vector vational inequality;semicontinuous
O175.8
A
1674-8425(2014)06-0122-04
10.3969/j.issn.1674-8425(z).2014.06.024
2013-12-21
广西教育厅科研立项项目(201106LX047)
胡志军(1981—),男,四川成都人,硕士研究生,讲师,主要从事最优化理论和分形图形压缩方面的研究。
胡志军,赵素平.扰动变分不等式的序下半连续性[J].重庆理工大学学报:自然科学版,2014(6):122 -125.
format:HU Zhi-jun,ZHAO Su-ping.Lower Semicontinuity with Set-relations of Perturbed Generalized Vector Quasivational Inequality Problems[J].Journal of Chongqing University of Technology:Natural Science,2014 (6):122-125.