赵旻+王椿
摘 要 许多肿瘤的发病都与表观遗传学异常相关。由于可以抑制抑癌基因的表达,DNA甲基化在血液系统肿瘤的发病过程中起着重要的作用。去甲基化药物已成功地用于治疗某些血液系统肿瘤、特别是骨髓增生异常综合征和急性髓细胞性白血病。本文主要介绍去甲基化药物在血液系统肿瘤治疗中的应用进展。
关键词 去甲基化药物 表观遗传学 血液系统肿瘤
中图分类号:R979.1; R733 文献标识码:A 文章编号:1006-1533(2014)11-0003-04
Application of demethylating agents in the treatment of hematologic malignancies
Zhao Min*, Wang Chun**
(Department of Hematology, Shanghai First Peoples Hospital, Shanghai 200080, China)
ABSTRACT Epigenetic dysregulation is linked to the pathogenesis of a number of malignancies. The methylation of DNA plays an important role during the maliganant transformation of hematopoietic malignancies since it can inhibit the expression of tumor suppressor genes. Demethylating agents have been successfully used in the treatment of various hematopoietic malignant disease, especially in the treatment of myelodysplastic syndromes and acute myeloid leukemia. In this review, we discuss the clinical development of demethylating agents in hematology.
KEY WORDS demethylating agents; epigenetics; hematologic malignancies
近年来,去甲基化药物在血液系统肿瘤治疗中的作用越来越受到重视。与传统化疗药物相比,去甲基化药物的毒、副反应相对较轻,加之作用机制不同,治疗骨髓增生异常综合征(myelodysplastic syndromes, MDS)和急性髓细胞性白血病(acute myelocytic leukemia, AML)等的疗效更好。
1 去甲基化药物
去甲基化药物治疗的理论基础是表观遗传学。后者是指在基因的DNA序列没有发生改变的情况下,基因功能发生了可遗传的变化并最终导致了表型的不同。表观遗传学对由DNA决定遗传特征(由DNA到RNA、再到蛋白质进行表达)的“中心法则”作了补充,指出生物的遗传特性在不改变其基因序列的情况下也会发生变化,而这种变化在肿瘤的发病机制中已一再被检测到。现在认为,决定表观遗传学过程的主要因素包括DNA修饰、组蛋白修饰和非编码RNA调控。DNA甲基化是一种最为重要的表观遗传学修饰,在DNA甲基转移酶(DNA methyltransferase, DNMT)的催化下,胞嘧啶的第5位碳原子被甲基化,从而转变为5-甲基胞嘧啶。在哺乳动物基因组中,DNA甲基化的主要位点是CpG二核苷酸,它在基因组中呈不均匀分布。在某些区域,CpG序列的密度较平均密度高10 ~ 20倍、鸟嘌呤和胞嘧啶的总含量>50%、长度>200个碱基,这些区域被称为CpG岛。大约50%的人基因中含有CpG岛,常位于基因上游调控区的启动子区。启动子区的CpG岛通常处于非甲基化状态,基因能正常表达。当CpG岛发生甲基化时,会影响基因转录调控,使基因表达发生沉寂。而去甲基化药物能改变这一病理过程,进而达到治疗目的[1]。现有去甲基化药物主要为DNMT抑制剂,可分为核苷类和非核苷类2类,其中核苷类去甲基化药物中的阿扎胞苷和地西他滨是目前临床应用较广且以去甲基化为主要作用机制的药物。
2 在血液系统肿瘤治疗中的应用
2.1 治疗MDS
在MDS的治疗中,去甲基化药物的作用越来越受到重视。近年来多项研究证实,MDS的分子异常包括DNA甲基化等表观遗传学进程,如CpG岛的高甲基化和基因启动子区的甲基化即与MDS的严重性和患者的生存期相关,而使用去甲基化药物治疗虽不能治愈MDS,却可获高反应率。与需要且可接受造血干细胞移植术的年轻患者相比,去甲基化药物更适宜用于老年患者,这主要表现在血液学参数改善和生存时间延长上,因即使没有达到完全缓解的患者也同样能够获得这些益处[2]。地西他滨用于老年患者的安全性已得到多项临床试验的确认,而被认为无骨髓毒性的阿扎胞苷亦被证实对老年患者有很好的疗效和安全性,对需接受造血干细胞移植术的患者也一样。有人建议将地西他滨和阿扎胞苷用于“先期治疗”,但这种“桥接治疗”的必要性还待更多研究的证实[3]。在治疗MDS时,去甲基化药物的疗效多需在治疗2 ~ 4个疗程后才逐步显现,终止治疗后则会导致疾病复发[4-5]。即使不间断地接受去甲基化药物治疗,几乎所有的患者也仍难以避免疾病的耐药和复发,而一旦出现疾病耐药或复发就会大大缩短患者的生存期[6]。
目前,MDS患者可通过国际预后评分系统(International Prognostic Scoring System, IPSS)、国际预后评分系统修正版和世界卫生组织的预后评分系统进行分层,这对恰当地使用去甲基化药物具有实际指导意义。对IPSS评分为低危和中危-1的患者,减少的血细胞类型、促红细胞生成素浓度以及细胞遗传学、分子生物学异常如5q、DR-15等生物学特征是选择恰当的一线治疗药物的依据,去甲基化药物主要用于输血依赖的、经促红细胞生成素等药物一线治疗后复发或耐药患者的后续治疗。也有人提出应使用阿扎胞苷一线治疗主要表现为血小板减少和中性粒细胞减少的低危MDS患者。一些临床试验结果显示,地西他滨或阿扎胞苷治疗低危MDS患者的总反应率为30% ~ 60%。对IPSS评分为中危-2和高危的患者,去甲基化药物已用于一线治疗,可使患者获得较高的总反应率和较长的总生存期,且毒性明显较低。在临床试验中,地西他滨或阿扎胞苷单药治疗高危MDS患者的总反应率为40% ~ 55%。但异体造血干细胞移植仍是可治愈MDS的唯一选择[2,7]。目前尚不能完全预测去甲基化药物治疗的疗效。骨髓增生异常法语工作组建立了一套预测模型以预测去甲基化药物治疗的总反应率、反应持续时间和总生存期,同时提出先期使用低剂量阿糖胞苷、骨髓原始细胞占比>15%以及异常核型与反应率相关,复杂核型与反应持续时间相关,总生存期与体能状态等因素相关,并建立了积分系统[8]。也有报道称,骨髓纤维化的出现对去甲基化药物治疗不利[9]。
2.2 治疗AML
去甲基化药物现已在AML治疗中占有重要地位。AML患者广泛存在基因高甲基化现象,常见的甲基化基因有8种,约95%的AML患者至少有1种基因高度甲基化,75%至少有2种基因高度甲基化。这些数据提示去甲基化药物在AML治疗中的潜力,但其同样被认为无法治愈AML。目前,经典的蒽环类药物和阿糖胞苷联合诱导化疗方案仍是AML的首选诱导化疗方案,且造血干细胞移植术仍是AML的最主要治愈性治疗手段。但对一些难以接受常规诱导化疗方案和造血干细胞移植的患者如老年AML患者,去甲基化药物因相对较低的毒性和较好的疗效已经成为重要的治疗药物。地西他滨已获准治疗这类AML患者,常用治疗方案为20 mg/(m2·d)×5 d。临床试验证实,地西他滨治疗的反应率优于支持治疗和低剂量阿糖胞苷;也有临床试验显示,地西他滨治疗可获较之支持治疗更长的生存期。但与常规诱导化疗方案不同,去甲基化药物治疗AML往往需要进行多个疗程后才能达到完全缓解且此疗效无法持久维持[10]。近期国内报道,地西他滨联合阿柔比星、粒细胞集落刺激因子等治疗初治及难治/复发AML的疗效较好;也有地西他滨联合硼替佐米治疗的报道。尽管去甲基化药物已用于AML治疗,但其不能治愈疾病,对那些治疗有效患者的后续治疗选择也还处在摸索阶段。有关研究证实,某些分子学和细胞遗传学参数与患者对地西他滨治疗的反应有关。例如,有人发现,对地西他滨治疗有反应患者的DNMT miR-29b水平明显高于无反应患者[11]。一项回顾性分析显示,伴有5和7号染色体异常的患者对阿扎胞苷或地西他滨治疗的反应与对大剂量伊达比星和阿糖胞苷治疗相似,且患者的持续反应时间和中位生存期也更长。DNMT 3A基因突变为AML的独立的预后不良指标,不受患者的年龄、白细胞计数、染色体组型和其他遗传学参数的影响[12]。但利用细胞遗传学和分子生物学参数来预测患者对去甲基化药物治疗的反应尚处在探索阶段,现还只能通过患者的病程、肿瘤增殖程度和一些临床指标来作治疗前评估。
2.3 治疗慢性粒单核细胞性白血病(chronic myelo-monocytic leukemia, CMML)
造血干细胞移植术也是CMML的治愈性治疗手段。但由于年龄和并发症等原因,CMML患者往往只能接受低剂量化疗治疗,无法有效控制疾病进展。在CMML患者中发现存在细胞周期调节基因p15(INK4b)的异常甲基化以及降钙素基因和细胞信号转导抑制因子-1基因的甲基化,这给对CMML进行去甲基化治疗提供了一定的理论基础。一项对31例CMML患者进行的临床试验显示,以每6周为1个疗程、每疗程使用地西他滨15 mg/(m2·次)×3次/d×3 d治疗1 ~ 6个疗程,总反应率为26%(完全缓解率10%、部分缓解率16%),骨髓改善率为19%,疾病稳定率为32%,2年生存率为25%,所有患者的中位生存期为15个月[13]。与治疗MDS和AML相似,地西他滨在近年来进行的一些临床试验中也不再以大剂量使用。一项临床试验以每28 d为1个疗程、每疗程使用地西他滨20 mg/(m2·d)×5 d治疗CMML患者共3个疗程,结果发现总反应率为38.6%,2年总生存率为48%,中位无进展生存期为12个月,3/4级不良反应为血细胞减少、感染和乏力[14]。
2.4 治疗其他血液系统肿瘤
对慢性粒细胞性白血病、多发性骨髓瘤等亦有使用地西他滨等去甲基化药物治疗的研究报道,但疗效尚待进一步临床试验的证实。
3 结语
DNA甲基化异常被认为是血液系统肿瘤发生、发展的一个重要生物学机制,一些临床试验也已证实去甲基化药物治疗某些血液系统肿瘤的疗效确切,但仍需对如联合用药和最适治疗剂量等作进一步的研究,以期获得更好的治疗疗效。
参考文献
[1] Huang YW, Kuo CT, Stoner K, et al. An overview of epigenetics and chemoprevention [J]. FEBS Lett, 2011, 585(13): 2129-2136.
[2] Seymour JF, Fenaux P, Silverman LR, et al. Effects of azacitidine compared with conventional care regimens in elderly (≥75 years) patients with higher-risk myelodysplastic syndromes [J]. Crit Rev Oncol Hematol, 2010, 76(3): 218-227.
[3] Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS [J]. Biol Blood Marrow Transplant, 2012, 18(8): 1211-1218.
[4] Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study [J]. Lancet Oncol, 2009, 10(3): 223-232.
[5] Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study [J]. Cancer, 2006, 106(8): 1794-1803.
[6] Jabbour E, Garcia-Manero G, Batty N, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy [J]. Cancer, 2010, 116(16): 3830-3834.
[7] Steensma DP, Baer MR, Slack JL, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial [J]. J Clin Oncol, 2009, 27(23): 3842-3848.
[8] Itzykson R, Thépot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine [J]. Blood, 2011, 117(2): 403-411.
[9] Sanna A, Gozzini A, Donnini I, et al. Influence of mild bone marrow fibrosis on response of INT2/high risk MDS patients to azacitidine [abstract] [J]. Leuk Res, 2011, 35(Suppl 1): S126-S127.
[10] Lübbert M, Rüter BH, Claus R, et al. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy [J]. Haematologica, 2012, 97(3): 393-401.
[11] Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive signifcance in older patients treated with a 10-day schedule of decitabine [J]. Proc Natl Acad Sci USA, 2010, 107(16): 7473-7478.
[12] Ravandi F, Issa JP, Garcia-Manero G, et al. Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities [J]. Cancer, 2009, 115(24): 5746-5751.
[13] Wijermans P, Lubbert M, Verhoef G, et al. An epigenetic approach to the treatment of advanced MDS: the experience with the DNA demethylating agent 5-aza-2-deoxycytidine (decitabine) in 177 patients [J]. Ann Hematol, 2005, 84( Suppl 1): 9-17.
[14] Braun T, Droin N, Itzykson R, et al. A phase II study of decitabine in advanced chronic myelomonocytic leukemia (CMML) [J]. Leuk Res, 2011, 35(Suppl 1): S63-S64.
(收稿日期:2014-05-12)