摘要:在分析湍流目标检测方法的基础上,针对传统的湍流目标检测方法的检测概率不高,运用对数似然比准则,并假设湍流回波是一个窄带马尔科夫过程,提出了一种新的湍流检测方法。分别设置了不同样本量、虚警率和信噪比的情形,运用Monte Carlo方法仿真分析了提出的湍流检测方法性能,并与传统的脉冲对处理方法进行了比较。仿真结果表明,提出的湍流检测方法的检测概率分别在不同的样本量、虚警率和信噪比的性能指标下均大于传统的脉冲对检测方法的检测概率。
关键词:对数似然比; 湍流检测; 信噪比; 马尔科夫过程; 谱宽
中图分类号:TP959.4 文献标识码:A文章编号:2095-2163(2014)04-0005-04
Abstract:On the basis of analyzing the turbulence target detection method, aimed at the situation that the detection probability of traditional turbulence detection method is not high, simultaneously using the logarithmic likelihood ratio criterion, and assumeing that turbulence echo is a narrowband markov process,a new turbulence detection method is proposed in this paper. The different sample 、size false alarm rate and signal-to-noise ratio are set up respectively.The proposed turbulence detection method performance is simulated by using the Monte Carlo method simulation,and the comparison with traditional method of the pulse pair is also given. The simulation results show that the detection probability of new detection algorithm is better than the traditional turbulence detection method in different indexes of sample、false alarm rate and signal to noise ratio.
Key words:Log Likelihood Ratio; Turbulence Detection; Signal to Noise Ratio; Markov Process; Spectrum Width
0引言
湍流指的是短时间内的风速波动,引发湍流的原因可能是气压变化、急流、冷峰、暖峰或雷暴,甚至在晴朗的天空中也可能出现湍流。湍流运动极不规则、也极不稳定,每一点的速度都在随机地变化着。通常可以将湍流看成是由各种不同尺度的大小和方向随机分布的涡旋叠合而成的流动,湍流中每个小尺度的涡旋特性则完全相同。对机载气象雷达而言,湍流是一种微粒速度偏差较大的气象目标,速度偏差可理解为速度的范围或多普勒频谱,频谱越宽,湍流越大[1]。在湍流区域中,气流速度和方向的变化都相当急剧,其作用不仅会使飞机颠簸,而且会使机体承受巨大的作用力,因而对飞行安全极为不利。为此,飞机应尽量避免进入湍流区域。
文献[2-5]分析了不同的湍流模型和湍流多普勒速度,并研究了传统的脉冲对湍流检测,但是其检测概率却不高,本文提出了一种新的湍流检测算法,经实验验证可大大提高其检测概率。文献[6-10]研究了湍流的特性和湍流的功率谱,应用傅里叶变换法对湍流信号进行仿真分析,在获得较好的湍流特性估算的同时,又分析了湍流空间三维场的产生。文献[11-12]分析了湍流中移动目标的检测算法,同时也研究了模式分析法在湍流信号检测中的应用。
本文则在详细分析湍流特性和传统的脉冲对检测方法的基础上,建立了湍流模型,而且运用对数似然比准则提出了一种新的湍流检测算法。
1湍流检测分析
3仿真分析
设机载气象雷达工作波长λ为0.03m,脉冲重复周期Ts为0.01s,运用Monte Carlo方法进行仿真分析。图5和图6分别是在相同虚警率和信噪比、不同样本量下新的湍流检测算法与传统脉冲对算法的检测概率的结果比较。
图5显示了在虚警率F=0.01、SNR=10dB、样本量N=16下的湍流检测性能。通过图5可以看出:随着湍流多普勒速度均方根值的增大,其检测概率呈增大趋势;通过与脉冲对处理方法对比,其检测性能要优于传统的脉冲对检测方法,并且高出了45.26%。
4结束语
本文在分析传统的脉冲对湍流检测方法的基础上,提出了一种新的湍流检测算法。并经实验验证,提出的新算法的检测概率要优于传统的检测方法。在低SNR下,本文提出的湍流检测算法的性能将更为优秀;这是因为传统的脉冲对湍流检测算法主要是检测相关因子的减少和非相干噪声,这就意味着为了得到相同的虚警率,其检测门限将要设置一定的增加,同时也进一步说明了脉冲对算法在SNR=10dB或更小的情形下其检测效率会急剧减小的原因所在。
参考文献:
[1]MASON M S, WOOD G S, FLETCHER D F. Numerical simulation of downburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009,97(11): 523-539.
[2]刘小洋,李勇,程宇峰.机载脉冲多普勒雷达湍流信号的仿真分析[J] .系统工程与电子技术, 2012,34(5):920-924.
[3]MAZURA I V, YANOVSKY F J. Modeling of relationship between differential doppler velocity and turbulence[J].Telecommunication and Radio Engineering,2007,66(12):1113-1121.
[4]LIGTHART L P,YANOVSKY F J, PROKOPENKO I G.Adaptive algorithms for radar detection of turbulent zones in clouds and precipitation[J]. IEEE Transactions on aerospace and electronic systems, 2003,39(1):357-367.
[5]SANDALIDIS H G,TSIFTSIS T A,KARAGIANNIDIS G K,et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J].IEEE Communications Letters,2008,12 (1):44-46.
[6]李勇,刘小洋,程宇峰.机载雷达三维空间湍流场产生与仿真分析[J].系统工程与电子技术,2013,35(6):1193-1198.
[7]NICOLA D D. Steady homogeneous turbulence in the presence of an average velocity gradient[J].International Journal of Engineering Science,2012,51:74-89.
[8]HUI M C H,LARSEN A,XIANG H F.Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97:48-59.
[9]DANAILA L, ANTONIA R A, BURATTINI P. Comparison between kinetic energy and passive scalar energy transfer in locally homogeneous isotropic turbulence[J]. Nonlinear Phenomena:Physica D,2012,241:224-231.
[10]THOMAS R,CHRISTIAN B,PIERRE M, et al. Generation of correlated stress time histories from continuous turbulence Power Spectral Density for fatigue analysis of aircraft structures[J].International Journal of Fatigue,2012,42:147-152.
[11]ZHU Xiang,MILANFAR,PEYMAN.Removing atmospheric turbulence via space-invariant deconvolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):157-170.
[12]OMAR O,LI Xin, MUBARAK S. Simultaneous Video stabilization and moving object detection in turbulence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(2):450-462.