植物盐胁迫相关信号转导机制的研究

2014-04-29 03:09:36夏金婵张小莉
安徽农业科学 2014年34期
关键词:转运体盐胁迫植物

夏金婵 张小莉

摘要

植物的抗盐反应是一个复杂的过程,受许多基因的调控,外界的高Na+通过IP3诱导胞内Ca2+的升高,SOS3接收Ca2+信号,激活SOS2的激酶活性,SOS2通过调节位于质膜和液泡膜上的Na+/H+反向转运体把Na+运到体外或液泡中,ABA、ROS、AtHK1、MAPK级联反应和LEA也参与盐胁迫造成的渗透胁迫和损伤的反应过程,但是要通过生物学手段利用盐信号传递过程中一些成分提高作物的抗盐能力,还需要对植物盐胁迫相关信号转导机制进行更加深入的研究。

关键词 植物;盐胁迫;SOS;转运体

中图分类号 S432.3+1  文献标识码 A  文章编号 0517-6611(2014)34-12023-05

Study on Signal Transduction Mechanism of Plant Salt Tolerance

XIA Jinchan, ZHANG Xiaoli*

(School of Basic Medicine, Henan College of Traditional Chinese Medicine, Zhengzhou, Henan 450008)

Abstract Salt related gene regulation network is a complex process, which includes many genes. Plant cells can sense high Na+ concentration, then increase cytosolic IP3 and Ca2. Ca2 signal was perceived by SOS3, which in turn activates the SOS2 kinase. The activated SOS2 kinase regulates sodium efflux and sequesters sodium into the vacuole by Na+/H+ antiporter, which express in plasma membrane and tonoplast. ABA, ROS, AtHK1, MAPK cascades and LEA are also involved in osmotic homeostasis and stress damage by salt stress. The signaling pathway component will be required to further understand to use in crop improvement.

Key words Plant; Salt stress; SOS; Transcripter

目前,土壤盐碱化是农业生产面临的一个严重问题,限制着全球农作物的产量,其中20%的灌溉区域和30%的干旱区域都受到土壤盐碱化的威胁[1],并且由于不恰当的灌溉和污水的任意排放,盐碱化面积还在不断的扩大,临海的耕种土地由于暴雨和风的影响盐碱化速度更快,因此剖析植物对高盐的应答机制、提高其抗盐能力在农业生产上有重要理论和现实意义。植物的抗盐反应受许多基因的调控,是一个复杂的过程。在过去10年间,通过各种筛选和克隆的方法已得到一系列与盐胁迫信号途径相关的基因,例如SOS1、HKT1或NHX1基因等。对这些基因功能的分析研究可为人们绘制出植物盐胁迫信号通路的大致轮廓。

1 第二信使Ca2+及其受体

在盐胁迫下,Ca2+不仅能够通过拮抗作用减少对Na+的吸收,改善植物的生长状况[2],而且Ca2+作为一个胞内第二信使参与植物抗盐的信号传导过程。植物在盐胁迫的情况下通过调控位于质膜、内质网和液泡上的机械感应或配体门控的Ca2+通道调控细胞质中的钙振荡。胞外的高钠状态不仅能够通过诱导膜的去极化激活机械感应门控的Ca2+通道[3-5],而且可通过IP3激活Ca2+通道,从而在胞内产生Ca2+信号。在拟南芥中FRY1基因编码一个肌醇多磷酸-1-磷酸酶,能够降解IP3。ABA不能诱导fry1缺失突变体中IP3含量的瞬间升高。fry1缺失突变体中不仅IP3含量很高,而且对ABA、低温和盐胁迫敏感。因此,在ABA、低温和盐胁迫的信号传导过程中IP3对维持胞内钙离子振荡过程中起着重要的作用[6]。盐胁迫不仅能够使植物中ABA含量升高,而且诱导ROS的产生[7-9]。Ca2+和H2O2可以作为第二信使启动有非生物胁迫所诱导产生的ABA引起的气孔关闭和基因的表达过程[10]。试验证明,ABA能够激ADPR(活腺苷核糖)环化酶,合成cADPR[11],在非生物胁迫下IP3和cADPR(环腺苷核糖)门控的钙通道都参与ABA诱导的胞内Ca2+振荡[12]。因为异源三聚体G(GTP结合)蛋白参与保卫细胞中ABA的信号传导过程[13],植物对高盐的反应可通过G蛋白相关受体诱导Ca2+信号产生,因此ABA参与植物在高盐条件下胞内Ca2+的升高过程。另一方面,胞内的Ca2+信号可被一些钙受体蛋白例如SOS3、类似SOS3钙结合蛋白(SCaBPs)、钙依赖的蛋白激酶(CDPKs)和钙调蛋白(CaMs)感受并向下传递信息。在拟南芥中,高盐和干旱能够诱导AtCDPK1和AtCDPK2基因的表达[14]。在水稻中,高盐、干旱和冷也能够诱导OsCDPK7基因的表达,CDPKs调控LEA类型基因的表达[15-16]。CaMs是高盐诱导Ca2+信号传导过程中的一个负调控因子。在拟南芥中过表达CaM3基因能够抑制Ca2+诱导的COR基因的表达[17-18]。CaATP酶介导Ca2+从胞质的外流,因此能够控制胞质Ca2+振荡的幅度。研究证明,CaM能够激活内质网上的CaATP酶(ACA2),而CDPK抑制其活性[19]。拟南芥中的一个CaM结合蛋白AtCaMBP25能够与CaM結合,是植物抗盐过程中的一个负调控因子[20]。因此,在盐胁迫下,这些因子共同调节LEA/COR基因的表达。

2 盐胁迫下SOS调控的信号通路

研究证明,SOS信号传递途经参与拟南芥的抗盐反应过程。SOS1基因编码一个Na+/H+反向转运体,定位在质膜上,不仅在细胞水平参与Na+外排,而且参与Na+从根向地上部分的转运过程[21-22],过表达SOS1基因能够增强拟南芥对高盐胁迫的抗性[23]。SOS2基因编码一个ser/thr蛋白激酶,在N末端含有一个催化区域,在C末端含有一个调控区域[24]。SOS3基因编码一个Ca2+结合蛋白,参与盐胁迫反应过程[25],SOS3蛋白能与SOS2蛋白C末端的调控区域相互作用,激活SOS2激酶的活性[26-27]。激活的SOS2蛋白磷酸化SOS1,增强SOS1的转运活性[28]。因此,SOS信号传导模式为:外界的高Na+诱导胞内Ca2+的升高,Ca2+与SOS3的结合,使其能够与SOS2结合,并且通过解除SOS2的自我抑制激活SOS2激酶的活性,SOS3与SOS2的复合物磷酸化位于质膜上的SOS1转运体,增强其向胞外转运Na+的能力。植物的抗盐能力与植物控制对Na+的吸收、Na+从木质部和根的外排、Na+在液泡的储存等有关。

表1 盐胁迫相关基因及其他基因的缩写

缩写全称缩写全称

FRYFIERY, inositol polyphosphate 1phosphataseMAPKMitogeneactivated protein kinase

IP3Inositol1,4,5triphosphateMKPMAPK phosphatase

SOS1Salt overly sensitive 1, Na+/H+ antiporterNDPKNucleoside diphosphate kinase

SOS2Salt overly sensitive 2, the protein kinaseABI1Protein phosphatase 1C

SOS3Salt overly sensitive 3, Ca2+binding proteinABI2Protein phosphatase 2C

SOS4Salt overly sensitive 4, a pyridoxal kinaseABAAbscisic acid

SCaBPsSOS3like Ca2+ binding proteinCDPKCa2+dependent protein kinase

HKT1Sodium transporterLEALateembryogenesisabundant

NHX1Tonoplast Na+/H+ antiporter

2.1 植物对Na+的吸收

植物抗盐的重要途径是阻止根细胞对Na+的吸收,减少高Na+對地上部分的毒害。被植物吸收的97%Na+都要排出体外。在大多数植物中,Na+可以通过Na+或非特异性的阳离子转运体或通道经共质体途径从根的表皮进入到木质部。维持Na+/ K+平衡对植物正常生长是至关重要的。在盐胁迫条件下,植物会限制Na+的吸收,保持K+的吸收。目前为止,人们对于吸收Na+的转运体或通道了解很少。但是,一些K+通道(HKT、HAK、KUP)参与根细胞对Na+的吸收过程,Na+能够竞争K+的结合位点,抑制对K+的吸收过程[29]。植物中HKT转运体包含2个家族。拟南芥、水稻和小麦中的大多数HKT转运体属于第一大类,对Na+的转运表现出高度的专一性;第二类HKT转运体可被低K+诱导,水稻中的HKT转运体,OsHKT2;1,在K+缺失的情况下转运Na+维持植物的生长过程[30]。HKT介导Na+的吸收,但在盐胁迫下其表达量下调限制过多Na+的吸收进入[31]。酵母中HAL1和HAL3调控P类型的ATP酶、Na+的外排和K+的吸收过程[32]。过表达拟南芥的HAL3a基因能够提高对盐的抗性[33]。过表达大麦的HvHKT2;1基因的转基因植株在50 μmol/L或100 μmol/L NaCl的处理下能够增强植株对Na+的吸收,提高木质部汁液中Na+的浓度,促进Na+向叶片的运输,但是这些过程能够提高大麦的抗盐能力[34]。试验证明,cAMP和cGMP能够抑制植物在高盐条件下对Na+的吸收[35]。在拟南芥中SOS4编码一个吡哆醛激酶,其突变能够增加植物对Na+的吸收,并降低K+的吸收,因此它可能作为一些离子通道的调控因子而起作用[36]。

植物还可以通过非质体吸收Na+[37] ,但该过程受到许多因素的调控,凯氏带在阻止Na+进入中柱的过程中起着重要的作用,例如玉米在200 mmol/L NaCl处理下,凯氏带的宽度增加47%[38]。水稻中Ca2+调控Na+通过非质体途径进入中柱的过程[39]。另外,水稻还通过合成木栓素沉淀在非质体途径中抑制Na+的进入[40]。硅的沉积是植物抗盐的另外一个机制。硅在根部的沉积能够抑制Na+通过非质体途径的吸收,降低植物中Na+/ K+的比例,提高植物的抗性[41]。硅的两个转运体Lsi1和Lsi2参与硅的吸收和沉积过程[42]。

2.2 植物对Na+的外排

Na+的外排是植物抗盐的重要手段。在拟南芥中,SOS1蛋白介导了Na+的外排过程,SOS1基因编码一个Na+/H+反向转运体。该过程需要消耗H+离子梯度所提供的能量,在根尖的表皮细胞和木质部的薄壁细胞中表达量较高,定位在细胞的质膜上[43]。在拟南芥中SOS1属于一个推测的Na+/H+反向转运体家族,含有27个基因。SOS1蛋白有一个推测环核苷酸结合序列(从764氨基酸残基到849氨基酸残基)和一个自我抑制区域(从998氨基酸残基到1146氨基酸残基),对SOS1活性至关重要[21,44],在静息状态这2个区域相互结合。SOS2可使SOS1自我抑制区域磷酸化,其转运活性大幅提高[28]。AtNHX8是一个推测的Na+/H+反向转运体,与SOS1序列高度同源,但是AtNHX8可能参与Li+的转运过程而非Na+,极有可能是由于C末端的不同[45]。SOS1蛋白除了参与植物的盐胁迫过程,还参与氧化胁迫反应过程[46]。水稻的OsSOS1能够抑制拟南芥sos1突变体对盐的敏感表型[47]。番茄的S1SOS1能进行Na+的长距离运输[48]等。这些都证明了在植物中SOS1类型的Na+/H+反向转运体参与植物的抗盐反应过程。在水稻的质膜上鉴定到一个Na+/H+反向转运体OsSOS1,与AtSOS1的功能类似[49]。在小麦根的表皮细胞上也鉴定到类似SOS1的转运体介导Na+的外排过程[50]。另外,SOS1在植物中或许参与根对K+的吸收和维持胞内pH的稳态过程[51]。尽管人们对Na+的外排在植物抗盐过程中的功能还存在争议,但是对SOS1类型的Na+/H+反向转运体的深入研究或许能够解开这个问题。

2.3  Na+向液泡的转运

在植物中把过多的Na+储存在液泡中是植物抗盐的重要机制。成熟的植物细胞含有一个大液泡,为胞质中过多的Na+储存提供场所。NHX1是定位在液泡膜上的一个Na+/H+转运体,能够互补酵母液泡膜上Na+/H+反向转运体ScNHX1的功能[52-56]。AtNHX1在拟南芥中有6个同源基因。该家族的转运体利用质子梯度不仅能够把Na+转运到液泡,也转运K+,除了参与盐胁迫过程,还调控泡内pH、细胞K+浓度、囊泡转运和蛋白定位[57]。AtNHX1基因能够被ABA和渗透胁迫诱导,在盐胁迫下不仅能够把Na+转运到液泡,而且能够维持细胞的膨压,防止水分的流失[58],因此在盐胁迫下把过多的Na+储存在液泡中是植物抵抗Na+毒害和渗透胁迫的有效手段,当然还需要其他机制的参与,例如减少液泡中Na+的吸收,增加外排,从而降低胞质中Na+含量。AtNHX1蛋白上有一个ABA反应元件(ABRE),所以ABA能够调节其活性。因为ABA的缺失突变体中abi11对盐的反应下调,ABI1可通过ABA信号途径调节AtNHX1基因的表达[58]。AtNHX1蛋白的C末端有一个钙调蛋白的结合位点,能够与AtCaM15结合抑制AtNHX1的转运活性[59]。试验证明,SOS2能够激活液泡膜上Na+/H+反向转运体的活性,但是sos3突变体液泡膜上Na+/H+反向转运体的活性并没有受到影响,所以SOS2激活液泡膜上Na+/H+反向转运体的活性是不依赖于SOS3的,可能是通过SCaBPs[60]。VCX1是液泡上的一个H+ / Ca2+反向转运体,对调节胞质钙振荡有重要作用。SOS2还可以通过不依赖于SOS3的途径调控VCX1的活性[61]。由于Na+/H+转运体NHX在转运Na+的同时需要H+梯度提供能量,在液泡膜上过表达H+ATP酶和H+焦磷酸酶能够促进Na+通过NHX的回收[62-67]。由于H+ATP酶含有多个亚基,过表达H+焦磷酸酶更加方便。过表达拟南芥中的H+焦磷酸酶AVP1能够提高植物的抗盐能力[68-69]。研究证明,AVP1参与植物的萌发后生长过程[70]。

2.4 植物中Na+从地上部分向根的运输

许多淡土植物把Na+运输到液泡的能力有限,但是它们可以把从地上部分运输到根部,减少对植物的毒害作用。在拟南芥中SOS1和HKT1参与Na+的运输过程。在100 mmol/L NaCl处理下,sos1突变体的地上部分积累了较多的Na+,并且SOS1基因在木质部周围的细胞中表达。这些都暗示SOS1参与Na+从地上部分向根的长距离运输过程[22]。AtHKT1是拟南芥中的一个转运体,其突变能够抑制sos1、sos2和sos3突变体对盐胁迫的敏感表型[71]。正向遗传学得到突变位点在AtHKT1基因的2个突变体sas21和sas22,都表现出Na+敏感的表型,Na+在地上部分大量積累[72]。AtHKT1定位在质膜上,在木质部薄壁细胞中的表达量高,athkt1突变体木质部的汁液中含有高浓度的Na+。大量的研究证明,AtHKT1参与Na+在植物中的转运过程[73-74],AtHKT1把Na+转运到地上部分的韧皮部,再运送到根部,减少Na+在地上部分的积累。盐胁迫或许还可以通过ABI2蛋白磷酸酶2C调控SOS信号通路,ABI2能与SOS2相互作用,抑制其活性,或抑制其调控的离子通道的活性,例如HKT1、SOS1和NHX1(286)。在水稻中SKC1是一个HKT类的转运体,即OsHKT5;1,其介导Na+从木质部向木质部薄壁细胞的转运,进而被运回皮层、表皮,外排到土壤,另外一个HKT类的转运体OsHKT1;4把Na+转运到叶鞘组织[75]。在小麦中Nax1和Nax2是HKT类的转运体,Nax1能够促进Na+在叶鞘的积累而降低叶片中Na+的含量,在根部Nax2负责Na+从木质部的外运[76]。在番茄中,SOS1的同源基因S1SOS1在盐胁迫下能够把Na+从木质部运出,降低叶片中Na+的含量[48]。

植物盐胁迫信号传递途径见图1。高盐胁迫诱导胞内Ca2+的升高,Ca2+作为信号分子,通过SOS3激活SOS2激酶,SOS2激酶使SOS1蛋白发生磷酸化而被激活把Na+从胞内转到胞外,还可激活Na+的转运体HKT1。SOS2激酶能够激活NHX1。该过程是不依赖SOS3的,有可能通过SCaBPs。MAPK信号通路也参与植物的抗盐反应过程。

注:虚线表示可能调控;箭头表示诱导;终止线表示抑制。

图1 植物盐胁迫信号传递途径

42卷34期

夏金婵等 植物盐胁迫相关信号转导机制的研究

3  植物盐胁迫下其他信号通路

盐胁迫能够诱导植物产生ROS,提高ROS去毒酶的活性。在烟草中过表达拟南芥的抗坏血酸氧化酶(AtAPX)能够提高对盐和氧化胁迫的抗性[77]。拟南芥pst1突变体中由于高活性的超氧化物歧化酶(SOD)和APX表现出对高盐胁迫的抗性[78]。因此,ROS去毒酶能够提高植物的抗盐能力。盐胁迫能够诱导ABA和H2O2的产生,或许作为第二信使诱导抗氧化基因的表达。

分裂原活化蛋白激酶(MAPK)信号途径参与胁迫下植物中ROS信号的传递过程,对拟南芥mkk2突变体的研究发现一条MAPK信号通路参与盐胁迫过程(AtMEKK1,AtMEK1/AtMKK2 和AtMPK4/ AtMPK6),在拟南芥中过表达AtMKK2能够提高AtMPK4和AtMPK6的活性,提高对盐的抗性[79]。H2O2也能够通过ANP1(MAPKKK)激活AtMPK3和AtMPK6[80]。过表达ANP1的同源基因NPK1能够提高烟草对盐的抗性[81]。拟南芥的MAPK磷酸酶1(mkp1)的缺失突变体是抗盐胁迫的。试验证明,MKP1能与AtMPK3、AtMPK4和AtMPK6相互作用,负调控一个Na+/H+反向转运体AT4G23700[82]。过表达核苷酸二磷酸激酶2(AtNDPK2)能够提高拟南芥对盐的抗性,点突变实验证明AtNDPK2与AtMPK3和AtMPK6相互作用。这些暗示AtNDPK2作为一个正调控因子通过MAPK信号途径参与盐胁迫信号的传递[83]。拟南芥的MAPK级联途径包括AtMEKK1/ANP1(MAPKKK)、AtMKK2/AtMEK1(MAPKK)和MAPKs(AtMPK3,AtMPK4,AtMPK6),能够传递盐的胁迫信号途径。AtMKP1 是一个负调控因子,AtNDPK2是一个正调控因子。盐胁迫能够诱导渗透保护相关的蛋白的合成。AtHK1是拟南芥中的一个组氨酸激酶,一个推测的感受渗透胁迫的受体,能够被盐胁迫诱导。盐胁迫能够抑制AtHK1的活性,使一些调节子不能发生磷酸化而具有活性,通过MAPK通路诱导与调节渗透相关的物质合成[84]。

ABA調节气孔的运动、蒸腾作用影响Na+向地上部分的运输,因此ABA在植物的抗逆过程中扮演着重要的角色。盐胁迫能够通过依赖或不依赖ABA途径调控LEA基因的表达。LEA(Lateembryogenesisabundant) 蛋白包括RD(Responsive to dehydration)、ERD(Early responsive to dehydration)、KIN(Cold inducible)、COR(Cold regulated)、RAB(Responsive to ABA),具有保护功能。盐和ABA能够诱导LEA基因的表达[85]。

4 研究展望

目前人们对植物抗盐反应的分子机制越来越清晰,但是大多数转运蛋白需要与其他分子相互作用或转录后修饰才有活性,而人们对此了解还很少。这也是限制人们通过过表达转运蛋白提高植物抗盐能力的一个限制因素。这些转运蛋白是否参与其他离子的转运过程也需要进一步的研究。

参考文献

[1]

MUNNS R.Comparative physiology of salt and water stress[J].Plant Cell Environ,2002,25(2):239-250.

[2] SCHROEDER J I,HAGIWARA S.Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells[J].Nature,1989,338:427-430.

[3]  ZHU J K.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Bol,2002,53:247-273.

[4] TESTER M ,DAVENPORT R A.Na+ tolerance and Na+ transport in higher plants[J].Ann Bot,2003,91(5):503-527.

[5] ZHU J K.Regulation of ion homeotasis under salt stress[J].Curr Opin Plant Biol,2003,6:441-445.

[6] XIONG L,LEE B H,ISHITANI M,et al.FIERY1 encoding an inositol polyphosphate 1phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis[J].Genes Dev,2001 15(15):1971-1984.

[7] XIONG L,SCHUMAKER K S,ZHU J K.Cell signaling during cold,drought,and salt stress[J].Plant Cell,2002,14:165-183.

[8]  XIONG L,ZHU J K.Regulation of abscisic acid biosynthesis[J].Plant Physiol,2003,133(1):29-36.

[9] HERNANDEZ J A,FERRER M A,JIMENEZ A,et al.Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves.Its relation with saltinduced necrotic lesions in minor veins[J].Plant Physiol,2001,127(3):817-831.

[10] SCHROEDER J I,ALLEN G J,HUGOUVIEUX V,et al.Guard cell signal transduction[J].Rev Plant Physiol Plant Mol Biol Annu,2001,52:627-658.

[11] SANCHEZ J P,DUQUE P,CHUA N H.ABA activates ADPR cyclase and cADPR induces a subset of ABAresponsive genes in Arabidopsis[J].Plant J,2004,38(3):381-395.

[12] WU Y,KUZMA J,MARECHAL E,et al.Abscisic acid signaling through cyclic ADPribose in plants[J].Science,1997,278(5346):2126-2130.

[13] WANG X Q,ULLAH H,JONES A,et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J].Science,2001,292(5524):2070-2072.

[14]  URAO T,KATAGIRI T,MIZOGUCHI T,et al.Two genes that encode Ca2+dependent protein kinases are indeced by drought and highsalt stresses in Arabidopsis thaliana[J].Mol Gen Genet,1994,244:331-340.

[15] SAIJO Y,HATA S,KYOZUKA J,et al.Overexpression of a single Ca2+dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J].Plant J,2000,23(3):319-327.

[16] SHEEN J.Ca2+Dependent protein kinases and stress signal transduction in plants[J].Science,1996,274:1900-1902.

[17] TOWNLEY H E,KNIGHT M R.Calmodulin as a potential negative regulator of arabidopsis cor gene expression1[J].Plant Physiol,2002,128(4):1169-1172.

[18] VISWANATHAN C,ZHU J K.Molecular genetic analysis of coldregulated gene transcription[J].Philos Trans R Soc London B,2002,357(1423):877-886.

[19]  HWANG I,SZE H,HARPER J F.A calciumdependent protein kinase can inhibit a calmodulinstimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis[J].Proc Natl Acad Sci USA,2000,97(11):6224-6229.

[20] PERRUC E,CHARPENTEAU M,RAMIREZ B C,et al.A novel calmodulinbinding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings[J].Plant J,2004,38(3):410-420.

[21] SHI H,ISHITANI M,KIM C,et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J].Proc Natl Acad Sci USA,2000,97(12):6896-6901.

[22] SHI H,QUINTERO F J,PARDO J M,et al.The putative plasmamembrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants[J].Plant Cell,2002,14(2):465-477.

[23] SHI H,LEE B H,WU S J,et al.Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J].Nat Biotechnol,2003,21(1):81-85.

[24] LIU J,ISHITANI M,HALFTER U,et al.The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J].Proc Natl Acad Sci,2000,97(7):3730-3734.

[25] ISHITANI M,LIU J,HALFTER U,et al.SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding[J].Plant Cell,2000,12(9):1667-1678.

[26] HALFTER U,ISHITANI M,ZHU J K.The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3[J].Proc Natl Acad Sci,2000,97(7):3735-3740.

[27] GUO Y,QIU Q S,QUINTERO F J,et al.Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and Cterminal regulatory domain for salt tolerance in Arabidopsis thaliana[J].Plant Cell,2004,16(2):435-449.

[28] QUINTERO F J,OHTA M,SHI H,et al.Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis[J].Proc Natl Acad Sci,2002,99(13):9061-9066.

[29] ZHU J K.Regulation of ion homeostasis under salt stress[J].Curr Opin Plant Biol,2003,6(5):441-445.

[30] HORIE T,COSTA A,KIM T H,et al.Rice OsHKT2;1 transporter mediates large Na+ influx component into K+ starved roots for growth[J].EMBO J,2007,26(12):3003-3014.

[31] LAURIE S,FEENEY K A,MAATHUIS F J M,et al.A role for HKT1 in sodium uptake by wheat roots[J].Plant J,2002,32(2):139-149.

[32] RUS A M,ESTAN M T,GISBERT C,et al.Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress[J].Plant Cell Environ,2001,24:875-880.

[33] ESPINOSARUIZ A,BELLES J M,SERRANO R.and CulianezMacla FA.Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth[J].Plant J,1999,20(5):529-539.

[34] MIAN A,OOMEN R J,ISAYENKOV S,et al.Overexpression of an Na+ and K+ permeable HKT transporter in barley improves salt tolerance[J].Plant J,2011,68(3):468-479.

[35] DONALDSON L,LUDIDI N,KNIGHT M R,et al.Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP level[J].FEBS Lett,2004,569(1):317-320.

[36] ZHU J K.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Bol,2002,53:247-273.

[37]  KRISHNAMURTHY P,RANATHUNGE K,NAYAK S,et al.Root apoplastic barriers block Na+ transport to shoots in rice(Oryzasativa L.)[J].J Exp Bot,2011,62(12):4215-4228.

[38] JIA W,WANG Y,ZHANG S,et al.Saltstressinduced ABA accumulation is more sensitively triggered in roots than in shoots[J].J Exp Bot,2002,53(378):2201-2206.

[39]  ANIL VS,KRISHNAMURTHY P,KURUVILLA S,et al.Regulation of the uptake and distribution of Na+ in shoots of rice(Oryzasativa) variety Pokkali:role of Ca2+ in salt tolerance response[J].Physiol Plantarum,2005,124(4):451-464.

[40] LUX A,MARTINKA M,VACULIK M,et al.Root responses to cadmium in the rhizosphere:a review[J].J Exp Bot,2011,62(1):21-37.

[41] MIAO B H,HAN X G,ZHANG W H.The ameliorative effect of silicon on soybean seedlings grown in potassiumdeficient medium[J].Ann Bot,2010,105:967-973.

[42] MA J F,YAMAJI N,MITANI N,et al.An effux transporter of silicon in rice[J].Nature,2007,448:209-212.

[43]  QIU Q S,BARKLA B J,VERAESTRELLA R,et al.Na+/H+ exchange activity in the plasma membrane of Arabidopsis[J].Plant Physiol,2003,132(2):1041-1052.

[44] FEKI K,QUINTERO F,PARDO J et al.Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation[J].Plant Mol Biol,2011,76(6):545-556.

[45] AN R,CHEN Q J,CHAI M F,et al.AtNHX8,a member of the monovalent cation:proton antiporter1 family in  Arabidopsis thaliana,encodes a putative Li/H antiporter[J].Plant J,2007,49(4):718-728.

[46] KATIYARAGARWAL S,ZHU J,KIM K,et al.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J].Proc Natl Acad Sci,2006,103(49):18816-1882.

[47] MATSUSHITA  N,MATOH T.Function of the shoot base of salttolerant reed(Phragmitescommunis Trinius) Plants for Na+ exclusion from the shoots[J].Soil Sci Plant Nutr,1992,38(3):565-571.

[48] OLIAS R,ELJAKAOUI Z,LI J,et al.The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs[J].Plant Cell Environ,2009,32(7):904-916.

[49] MARTINEZATIENZA J,JIANG X,GARCIADEBLAS B,et al.Conservation of the salt overly sensitive pathway in rice[J].Plant Physiol,2007,143(2):1001-1012.

[50] CUIN T A,BOSE J,STEFANO G,et al.Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in plant aquantification methods[J].Plant Cell Environ,2009,34(6):947-961.

[51] OH D H,LEE S Y,BRESSAN R A,et al.Intracellular consequences of SOS1 deficiency during salt stress[J].J Exp Bot,2010,61(4):1205-1213.

[52] GAXIOLA R A,RAO R,SHERMAN A,et al.The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast[J].Proc Natl Acad Sci,1999,96(4):1480-1485.

[53] BANJARA M,ZHU L,SHEN G,et al.Expression of an Arabidopsis odium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance[J].Plant Biotechnol Rep,2012,6(1):59-67.

[54] KOBAYASHI S,ABE N,YOSHIDA K,et al.Molecular cloning and characterization of plasma membraneand vacuolartype Na+/H+ antiporters of an alkalinesalttolerant monocot,Puccinellia tenuiflora[J].J Plant Res,2012,125(4):587-594.

[55] LIU L,ZENG Y,PAN X,et al.Isolation,molecular characterization,and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica[J].Mol Biol Rep.2012,39(6):7193-7202.

[56] WU G Q,XI J J,WANG Q,et al.The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought[J].J Plant Physiol,2011,168(8):758-767.

[57] SOTTOSANTO J B,GELLI A,BLUMWALD E.DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter:impact of AtNHX1 on gene expression[J].Plant J,2004,40(5):752-771.

[58] SHI H,ZHU J K.Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J].Plant Mol Biol,2002,50(3):543-550.

[59] YAMAGUCHI T,AHARON G S,SOTTOSANTO J B,et al.Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+and pH dependentmanner manner[J].Proc Natl Acad Sci,2005,102(44):16107-16112.

[60]  QIU Q S,GUO Y,QUINTERO F J,et al.Regulation of vacuolar Na+/H+exchange in Arabidopsis thaliana by the saltoverly sensitive (SOS) pathway[J].J Biol Chem,2004,279(1):207-215.

[61] CHENG N H,PITTMAN J K,ZHU J K,et al.The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance[J].J Biol Chem,2004,279(4):2922-2926.

[62]  GAXIOLA R A,PALMGREN M G,SCHUMACHER K.Plant proton pumps[J].FEBS Lett,2007,581(12):2204-2214.

[63] BHASKARAN S,SAVITHRAMMA D L.Coexpression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+pyrophosphatase enhances salt tolerance in transgenic tomato[J].J Exp Bot,2011,62(15):5561-5570.

[64] CHEN J,XIAO Q,WU F,et al.Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant,Avicennia marina,through increasing the expression of H+ATPase and Na+/H+ antiporter under high salinity[J].Tree Physiol,2010,30(12):1570-1585.

[65] FERJANI A,SEGAMI S,HORIGUCHI G,et al.Keep an eye on PPi:the vacuolartype H+pyrophosphatase regulates postgerminative development in Arabidopsis[J].Plant Cell,2011,23(8):2895-2908.

[66] GOUIAA S,KHOUDI H,LEIDI EO,et al.Expression of wheat Na+/H+ antiporter TNHXS1 and H+pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance[J].Plant Mol Biol,2012,79(1/2):137-155.

[67] KHOUDI H,MAATAR Y,GOUIAA S,et al.Transgenic tobacco plants expressing ectopically wheat H+pyrophosphatase (H+PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium[J].J Plant Physiol,2012,169(1):98-103.

[68] PARK S,LI J,PITTMAN J K,et al.Upregulation of a H+pyrophosphatase (H+PPase) as a strategy to engineer droughtresistant crop plants[J].Proc Natl Acad Sci,2005,102(52):18830-18835.

[69]  LI Z G,BALDWIN M,HU Q,et al.Heterologous expression of Arabidopsis H+pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J].Plant Cell Environ,2010,33(2):272-289.

[70] FERJANI A,SEGAMI S,HORIGUCHI G,et al.Keep an eye on PPi:the vacuolartype H+pyrophosphatase regulates postgerminative development in Arabidopsis[J].Plant Cell,2011,23(8):2895-2908.

[71] RUS A,LEE B H,MUNOZMAYOR A,et al.AtHKT1 facilitates Na+ homeostasis and K nutrition in planta[J].Plant Physiol,2004,136(1):2500-2511.

[72] BERTHOMIEU P,CONEJERO G,NUBLAT A,et al.Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J].EMBO J,2003,122(9):2004-2014.

[73] HORIE T,HAUSER F,SCHROEDER J I.HKT transportermediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J].Trends Plant Sci,2009,14(12):660-668.

[74] BAEK D,JIANG J,CHUNG J S,et al.Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance[J].Plant Cell Physiol,2011,52(1):149-161.

[75] CAO Y,JIN X,HUANG H,et al.Crystal structure of a potassium ion transporter,TrkH[J].Nature,2011,471(7338):336-340.

[76]  JAMES R A,BLAKE C,BYRT C S,et al.Major genes for Na+ exclusion,Nax1 and Nax2 (wheat HKT1;4 and HKT1;5),decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions[J].J Exp Bot,2011,62(8):2939-2947.

[77]

BADAWI G H,KAWANO N,YAMAUCHI Y,et al.Overexpression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J].Physiol Plant,2004,121(2):231-238.

[78] TSUGANE K,KOBAYASHI K,NIWA Y,et al.A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification[J].Plant Cell,1999,11(7):1195-1206.

[79] TEIGE M,SCHEIKL E,EULGEM T,et al.The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J].Mol Cell,2004,15(1):141-152.

[80] MOON H,LEE B,CHOI G,et al.NDP kinase 2 interacts with two oxidative stressactivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J].Proc Nat Acad Sci,2003,100(1):358-363.

[81] KOVTUN Y,CHIU W L,TENA G,et al.Functional analysis of oxidative stressactivated mitogenactivated protein kinase cascade in plants[J].Proc Nat Acad Sci,2000,97(6):2940-2945.

[82] ULM R,ICHIMURA K,MIZOGUCHI T,et al.Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1[J].EMBO J,2002,21(23):6483-6493.

[83] MOON H,LEE B,CHOI G,et al.NDP kinase 2 interacts with two oxidative stressactivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J].Proc Nat Acad Sci,2003,100(1):358-363.

[84] URAO T,YAKUBOV B,SATOH R,et al.A transmembrane hybridtype histidine kinase in Arabidopsis functions as an osmosensor[J].Plant Cell,1999,11(9):1743-1754.

[85] WISE M J,TUNNACLIFFE A.POPP the question:what do LEAproteins do[J].Trends Plant Sci,2004,9(1):13-17.

猜你喜欢
转运体盐胁迫植物
转运体的研究进展及在中药研究上的应用
大肠杆菌ABC转运体研究进展
高尿酸血症治疗药物及其作用靶点研究进展
哦,不怕,不怕
外源NO对NaCl胁迫下高粱幼苗生理响应的调节
将植物穿身上
花生Clp家族成员的筛选、聚类和盐胁迫响应分析
浅谈盐胁迫对紫穗槐生理指标的影响
植物罢工啦?
植物也疯狂