磁共振血管成像技术在颅内动脉瘤的临床应用

2014-04-15 14:57王思迦李跃华李明华
介入放射学杂志 2014年9期
关键词:伪影信噪比分辨率

王思迦, 李跃华, 李明华

颅内动脉瘤(intracranial aneurysm,IAN)发病机制未明,其形成是遗传学、血流动力学以及后天退行性改变等多种因素综合作用的结果,最终导致动脉内腔异常扩张而形成的一种血管瘤样突起[1]。IAN破裂是引起蛛网膜下腔出血(subarachnoid hemorrhage,SAH)最常见的原因,约占所有脑血管病变的25%,其破裂受瘤体大小、位置和形态的多重影响[2-6]。颅内动脉瘤的原发出血、动脉痉挛以及再出血致残和致死率均较高,因此需要早期诊断和治疗。传统的DSA是IAN诊断、成像的金标准[7-8],但存在侵袭性、高费用和对比剂过敏等缺点。磁共振血管成像技术 (MRA)在过去近30年中迅猛发展,由于其具有高分辨率、低风险、操作简单以及避免了对比剂过敏、肾毒性和可能发生的中枢神经系统并发症等特点已被广泛应用于IAN的诊断和随访中[9]。通过血管重建和调整旋转角度,MRA能清晰显示动脉瘤及其与血管的关系,即MRA除了能直接显示动脉瘤的大小、部位、形态和载瘤动脉等,还可选择多角度观察动脉瘤的整体情况。本文旨在比较各种MRA技术在IAN诊断的应用范围。

1 MRA检查方法概述

MRA是利用血管内流动血液与周围静止组织信号的差别来凸显和观察目标血管[10]。目前最常用的技术可分为两类,一是非增强MRA,如时间飞跃MRA(time of flight MAR,TOF-MRA)和相位对比MRA(phase contrast MRA,PC-MRA);二是利用顺磁性对比剂缩短血液T1时间的对比增强MRA(contrastenhanced MRA,CE-MRA)。

1.1 常用MRA技术

1.1.1 TOF-MRA TOF-MRA是利用脉冲激发和回波接受的时间间隔中血流位置发生的变化进行成像的。可分为2D TOF-MRA、3D TOF-MRA,基于各自不同的优缺点可应用于不同的血管疾病中。由于2D TOF-MRA成像层面厚,分辨率低,较少应用于脑血管成像。3D TOF-MRA是针对多个薄层进行容积性激发和采集,较常用于头颅成像。其空间分辨率较高且受血液湍流影响小;同时图像信噪比较高、重建后图像质量较好。但在静脉血管显示方面不如2D TOF-MRA;背景组织信号抑制效果欠佳;扫描时间长。

1.1.2 PC-MRA PC-MRA是利用流动血液在受激励共振过程中其相位变化与其速度的对应关系原理而成像。其背景组织信号抑制效果好于TOFMRA并有利于慢血流的显像。由于必须按3个流动方向做3次采集,导致成像时间较长而降低了分辨率;且其编码流速会直接影响图像质量。

1.1.3 CE-MRA CE-MRA的原理就是通过注射对比剂改变血液的T1值,使其缩短并利用快速梯度回波序列使得目标血管显影。它能更好地显示血管腔和血管狭窄程度;相比非强化无对比剂MRA不易漏诊动脉瘤;成像速度较快提高了分辨率。但由于需要注射对比剂,仍存在对比剂过敏或肾毒性等潜在的不良反应。

1.2 各项MRA检查技术的临床应用

1.2.1 TOF-MRA TOF-MRA是最常用的筛查IAN的技术。其成像质量和动脉瘤大小[11-15]、位置[11,16]均相关。据沙琳等[17]报道,TOF-MRA对IAN诊断的灵敏度和特异度分别为83.3%和46.4%,正确率达到73%。Li等[18]发现,3D TOFMRA对直径小于5mm的小动脉瘤准确性达96%~97%,灵敏度达98.2%~ 98.7%,特异度为93.2%~94.8%。

1.2.2 PC-MRA 相比TOF-MRA,PC-MRA在动脉瘤影像学诊断的应用尚在探索阶段,国内外相关文献报道不多。Huston等[19]指出,TOF和PC法的图像质量在直径3~15 mm的IAN中无明显差异,但PC法对直径大于15mm的IAN成像质量优于TOF法。戴平丰等[20]发现,PC-MRA对直径大于5mm的IAN诊断特异度高达100%,灵敏度为81.8%。张洪英等[21]认为在动脉瘤破裂后出血的亚急性期,出血灶的高铁血红蛋白在TOF上显示为高信号,结合3D PC法可以修正并获得动脉瘤的清晰图像。

1.2.3 CE-MRA CE-MRA检查速度快,对流速导致的伪影不敏感,获得的图像视野大,能突出显示各段血管的病变细节,特别是对小动脉瘤体颈的细节显示,优于非增强MRA。同时,该项技术丰富的后处理方法如MIP和SVR能清晰显示动脉瘤与血管的解剖关系;MPR对颅内动脉瘤内部结构显示较好[22],3项后处理技术可起到互相补充的作用,从而提高了CE-MRA对颅内动脉瘤诊断的敏感性和特异性,分别可高达95%~100%和73%~100%[23-24]。

2 不同技术临床应用比较及选择

上述3项MRA技术都有其不同应用范围,Gibbs等[25]比较了IAN患者在3.0 T TOF-MRA和3.0 T CE-MRA的图像质量,发现3.0-T TOFMRA图像质量优于3.0-TCE MRA;同时TOF-MRA由于视野范围较大而不易漏诊小直径动脉瘤,3.0 T CEMRA则更适用于血流较慢或动脉远端的动脉瘤。对于动脉瘤伴出血或瘤栓,CE-MRA有独特的优势[26-27]。Tabuchi等[28]报道1例系统性红斑狼疮合并肾衰竭的患者大脑中动脉开窗畸形伴动脉瘤破裂,发现应用3D TOF-MRA能准确显示动脉瘤与畸形血管之间的关系。在动脉瘤线圈介入治疗随访中,Pierot等[29]通过比较3.0 T 3D-TOFMRA和CE-MRA,在3.0 T 3D-TOFMRA和CE-MRA对动脉瘤残余的发现率相似的前提下,3D-TOFMRA对线圈显示更佳。同时,对比剂的高费用、肾毒性、过敏反应以及患者不适反应等均限制了CE-MRA在长期随访中的应用。因此,3.0 T 3D-TOFMRA成为动脉瘤患者介入治疗随访的首选影像学检查方法。而CE-MRA因其成像速度快且较少受伪影干扰,更适合急性IAN破裂的危重患者。PC-MRA可以显示大动脉瘤内部的血流动力学信息,且受出血灶信号改变影响较小,但其分辨率和小动脉瘤检出的敏感性均低于TOF-MRA而受限于动脉瘤直径较小患者的临床应用[19-20]。因此,对患者检查方式的选择应综合各方面因素,选择针对不同情况的最佳适用技术。

3 MRA的新进展

Kang等[30]将MRA场强提高至7.0 T。3.0到7.0 T场强的变化中信噪比几乎呈线性上升,从而获得了更好的背景抑制,提高了分辨率,缩短了检查时间。Wrede等[31]发现7.0 T TOF-MRA在显示动脉瘤体颈的细节方面优于1.5 T TOF-MRA,可提供观察血管微观结构的高分辨率图像,但高场强是否优于低场强仍待验证。Yang等[32]将全自动计算机辅助检测技术 (computer-aided detection,CAD)与3DTOFMRA相结合,提高小直径动脉瘤诊断的灵敏度至91%,高于之前报道的35%[33-35]。其可作为一项TOF-MRA辅助技术,标记感兴趣局域从而简化诊断过程。Stivaros等[36]在3D-TOF MRA加入黑血(BB)序列后,能更清晰地显示IAN与其供血动脉分支间的关联以及动脉瘤颈的细节,尤其是局部有血肿和慢血流时,可以弥补3D-TOF的不足,同时BB技术能抑制动脉瘤栓塞术后残留血栓的高信号[37]。但BB序列的补充也延长了检查时间,适用于不宜反复血管成像检查的患者。近年来新采用的高分辨率3D TOF-MRA单根血管显影技术应用于疑似动脉瘤患者诊断中[38],也是一项诊断IAN的影像新技术。

Edelman等[39-40]提出基于3D CE-MRA的偏共振增强血管成像(off resonance contrast angiography,ORCA)技术可利用对比剂在血管内外的浓度差产生的共振频率位移进行成像,几乎完全抑制背景信号,由于无需减影从而避免了减影中信噪比的降低,此外还避免了与图像不匹配的伪影产生,尤其适用于观察动脉瘤介入治疗过程。高限制背向投影(highly constrained back projection,HYPR)[41-42]技术应用于时间分辨的3D CE-MRA可减少伪影,在提高重建速度的同时保留较高的信噪比,在动脉瘤诊断方面具有一定的临床应用潜力。随着k空间采集技术的改良,3D CE-MRA的层块采集时间大大缩短,提高了时间分辨率,其中时间分辨对比剂动态显像技术 (three-dimenstional time-resolved imaging of contrast Kinetics,3D-TRICKS)[43-44]用于动脉瘤以及动脉瘤线圈栓塞术后的多项研究表明,相比非时间分辨CE-MRA,其无需注射对比剂行预试验,减少了流动伪影和静脉污染,能更好地显示动脉瘤和载瘤动脉的关系以及动脉瘤介入治疗的线圈形态,大大提高了成像质量。由TRICKS技术改良的欠样椭圆中心采集重建技术 (undersampled elliptical Centric View-Order)[45]在保留较高的SNR的基础上,明显提高了时间分辨率,但其在IAN中的应用仍需进一步探索。将k空间时间广用线性采集加速技术(k-t broad-use linear acqusition speed-up technique,BLAST)[46]应用于3D PC-MRA的可减少传统重建技术引起的动脉瘤图像伪影,获得更高的信噪比。

作为传统MRI技术的补充,MRA因其安全、可重复性而适用于未破IAN筛查、动脉瘤术后随访、IAN合并出血或肾功能受损的患者。但是,MRA的空间分辨率仍低于传统的DSA技术,当瘤体直径≤3mm时灵敏度和特异度明显降低[11-15,47];无法清晰显示瘤体、瘤颈和载瘤动脉以及三者之间的关系[48],从而无法充分提供动脉瘤线圈介入治疗指征;亚急性出血产生的短T1效应可导致出血与流动血流相似[49],从而降低了对TOF-MRA IAN诊断的灵敏度和特异度,急性SAH患者产生的运动伪影也降低了MRA图像质量[50],因此MRA不能完全替代DSA。然而,随着MRA新技术以及高场强的应用,其空间、时间分辨率不断提高伴随伪影的减少和高信噪比的保留,MRA在血管疾病诊断方面将会具有更广阔的应用范围和更突出的临床价值。

[1] Jeon TY,Jeon P,Kim KH.Prevalence of unruptured intracranial aneurysm on MR angiography[J].Korean JRadiol,2011,12:547-553.

[2] Mordasini P,Schroth G,Guzman R,et al.Endovascular treatment of posterior circulation cerebral aneurysms by using Guglielmi detachable coils:a 10-year single-center experience with special regard to technical development[J].AJNR,2005,26:1732-1738.

[3] 金点石,高宝山,钱盛伟,等.89例颅内动脉瘤栓塞术后血管造影随访报告[J].中华神经外科杂志,2007,23:194-196.

[4] Baráth K,Cassot F,Rüfenacht DA,et al.Anatomically shaped internal carotid artery aneurysm in vitro model for flow analysis to evaluate stent effect[J].AJNR,2004,25:1750-1759.

[5] Fogelholm R,Hernesniemi J,Vapalahti M.Impact of early surgery on outcome after aneurysmal subarachnoid hemorrhage.A population-based study[J].Stroke,1993,24:1649-1654.

[6] UCAS Japan Investigators,Morita A,Kirino T,et al.The natural course of unruptured cerebral aneurysms in a Japanese cohort[J].N Engl JMed,2012,366:2474-2482.

[7] Wong SC,Nawawi O,Ram li N,et al.Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm[J].Acad Radiol,2012,19:701-707.

[8] Sun G,Ding J,Lu Y,et al.Comparison of standard-and lowtube voltage 320-detector row volume CT angiography in detection of intracranial aneurysms with digital subtraction angiography asGold standard[J].Acad Radiol,2012,19:281-288.

[9] Leffers AM,Wagner A.Neurologic complications of cerebral angiography.A retrospective study of complication rate and patient risk factors[J].Acta Radiol,2000,41:204-210.

[10]杨贞振,杨 菁,刘宏伟,等.MRA在诊断血管疾病方面的临床应用 [J].中国中西医结合影像学杂志,2005,3:291-292.

[11]Korogi Y, Takahashi M, Mabuchi N, et al.Intracranial aneurysms:diagnostic accuracy of three-dimensional,Fourier transform,time-of-flight Mr angiography[J].Radiology,1994,193:181-186.

[12]Okahara M,Kiyosue H,Yamashita M,et al.Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images:a study of 133 aneurysms[J].Stroke,2002,33:1803-1808.

[13]White PM,Teasdale EM,Wardlaw JM,et al.Intracranial aneurysms:CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort[J]. Radiology,2001,219:739-749.

[14]Atlas SW.Magnetic resonance imaging of intracranial aneurysms[J].Neuroimaging Clin N Am,1997,7:709-720.

[15]Huston J,Nichols DA,Luetmer PH,et al.Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms:importance of aneurysm size[J].AJNR,1994,15:1607-1614.

[16]Hiratsuka Y,Miki H,Kiriyama I,et al.Diagnosis of unruptured intracranial aneurysms:3 TMR angiography versus 64-channel multi-detector row CT angiography[J].Magn Reson Med Sci,2008,7:169-178.

[17]沙 琳,边 杰,程绍玲,等.CE-MRA与TOF-MRA对头颈部动脉瘤诊断价值的对比研究[J].大连医科大学学报,2008,30:56-60.

[18]Li MH,Li YD,Gu BX,et al.Accurate diagnosis of small cerebral aneurysms≤ 5 mm in diameter with 3.0-T MR angiography[J].Radiology,2014,271:553-560.

[19]Huston J,Rufenacht DA,Ehman RL,et al.Intracranial aneurysms and vascular malformations:comparison of time-offlight and phase-contrast MR angiography[J].Radiology,1991,181:721-730.

[20]戴平丰,胡吉波,章士正,等.脑血管病变三维PC法MRA与动脉DSA的对照研究[J].实用放射学杂志,2000,16:131-135.

[21]张洪英,李东升,杨炯达.颅内动脉瘤影像学诊断研究进展[J].实用医学影像杂志,2006,7:60-62.

[22]柏根基,王 煊.颅内动脉瘤3D DCE-MRA与DSA对照研究[J].临床放射学杂志,2008,27:160-162.

[23]刘 崎,陆建平,王 飞,等.三维动态增强MR血管造影对颅内动脉瘤的诊断价值 [J].中华放射学杂志,2003,37:238-242.

[24]Unlu E,Cakir B,Gocer B,et al.The role of contrast-enhanced MR angiography in the assessment of recently ruptured intracranial aneurysms:a comparative study[J].Neuroradiology,2005,47:780-791.

[25]Gibbs GF,Huston J,Bernstein MA,et al.3.0-Tesla MR angiography of intracranial aneurysms:comparison of time-offlight and contrast-enhanced techniques[J].J Magn Reson Imaging,2005,21:97-102.

[26]Martin AJ,Hetts SW,Dillon WP,et al.MR imaging of partially thrombosed cerebral aneurysms:characteristics and evolution[J]. AJNR,2011,32:346-351.

[27]Suzuki M,Matsui O,Ueda F,et al.Contrast-enhanced MR angiography (enhanced 3-D fast gradient echo)for diagnosis of cerebral aneurysms[J].Neuroradiology,2002,44:17-20.

[28]Tabuchi S,Yoshioka H.Ruptured aneurysm at the fenestration of the middle cerebral artery detected by magnetic resonance angiography in a patient with systemic lupus erythematosus and renal failure:a case report[J].JMed Case Rep,2014,8:30.

[29]Pierot L,Portefaix C,Boulin A,et al.Follow-up of coiled intracranial aneurysms:comparison of 3D time-of-flight and contrast-enhanced magnetic resonance angiography at 3 T in a large,prospective series[J].Eur Radiol,2012,22:2255-2263.

[30]Kang CK,Hong SM,Han JY,et al.Evaluation of MR angiography at 7.0 Tesla MRI using birdcage Radio frequency coilswith end caps[J].Magn Reson Med,2008,60:330-338.

[31]Wrede KH,Dammann P,Mönninghoff C,et al.Non-enhanced MR imaging of cerebral aneurysms:7 Tesla versus 1.5 Tesla[J]. PLoSOne,2014,9:e84562.

[32]Yang X,Blezek DJ,Cheng LT,et al.Computer-aided detection of intracranial aneurysms in MR angiography [J].J Digit Imaging,2011,24:86-95.

[33]Kraft JK,Bradey N,Newman PK.Intracranial aneurysm:seen and unseen[J].JNeurol Neurosurg Psychiatry,2003,74:1431.

[34]Wardlaw JM,White PM.The detection and management of unruptured intracranial aneurysms[J].Brain,2000,123:205-221.

[35]White PM,Teasdale EM,Wardlaw JM,et al.Intracranial aneurysms:CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort[J]. Radiology,2001,219:739-749.

[36]Stivaros SM,Harris JN,Adams W,et al.Does black blood MRA have a role in the assessment of intracerebral aneurysms?[J].Eur Radiol,2009,19:184-192.

[37]Yamada N,Hayashi K,Murao K,et al.Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography[J].AJNR,2004,25:1154-1157.

[38]Li H,Yan L,LiMH,et al.Evaluation of intracranial aneurysms with high-resolution MR angiography using single-artery highlighting technique: correlation with digital subtraction angiography[J].Radiol Med,2013,118:1379-1387.

[39]Edelman RR,Storey P,Dunkle E,et al.Gadolinium-enhanced off-resonance contrast angiography[J].Magn Reson Med,2007,57:475-484.

[40]Edelman RR.MR imaging of the pancreas:1.5 T versus 3 T[J].Magn Reson Imaging Clin N Am,2007,15:349-353.

[41]Huang Y,Wright GA.Time-resolved MR angiography with limited projections[J].Magn Reson Med,2007,58:316-325.

[42]Mistretta CA.Undersampled radial MR acquisition and highly constrained back projection (HYPR)Reconstruction:potential medical imaging applications in the post-Nyquist era[J].JMagn Reson Imaging,2009,29:501-516.

[43]Cashen TA,Carr JC,Shin W,et al.Intracranial time-resolved contrast-enhanced MR angiography at 3 T[J].AJNR,2006,27:822-829.

[44]Zou Z,Ma L,Cheng L,et al.Time-resolved contrast-enhanced MR angiography of intracranial lesions [J].J Magn Reson Imaging,2008,27:692-699.

[45]Madhuranthakam AJ,Hu HH,Barger AV,et al.Undersampled elliptical centric view-order for improved spatial resolution in contrast-enhanced MR angiography [J].Magn Reson Med,2006,55:50-58.

[46]Van Ooij P,Guédon A,Marquering HA,et al.k-t BLAST and SENSE accelerated time-resolved three-dimensional phase contrast MRI in an intracranial aneurysm [J].MAGMA,2013,26:261-270.

[47]Deutschmann HA,Augustin M,Simbrunner J,et al.Diagnostic accuracy of 3D time-of-flight MR angiography compared with digital subtraction angiography for follow-up of coiled intracranial aneurysms:influence of aneurysm size[J].AJNR,2007,28:628-634.

[48] Anzalone N, Triulzi F, Scotti G. Acute subarachnoid haemorrhage:3D time-of-flight MR angiography versus intraarterial digital angiography[J].Neuroradiology,1995,37:257-261.

[49]Brugières P,Blustajn J,Le Guérinel C,et al.Magnetic resonance angiography of giant intracranial aneurysms[J]. Neuroradiology,1998,40:96-102.

[50]Sankhla SK,Gunawardena WJ,Coutinho CM,et al.Magnetic resonance angiography in the management of aneurysmal subarachnoid haemorrhage: a study of 51 cases [J]. Neuroradiology,1996,38:724-729.

猜你喜欢
伪影信噪比分辨率
两种64排GE CT冠脉成像信噪比与剂量对比分析研究
基于深度学习的无人机数据链信噪比估计算法
EM算法的参数分辨率
核磁共振临床应用中常见伪影分析及应对措施
原生VS最大那些混淆视听的“分辨率”概念
基于MR衰减校正出现的PET/MR常见伪影类型
低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像
基于深度特征学习的图像超分辨率重建
一种改进的基于边缘加强超分辨率算法
减少头部运动伪影及磁敏感伪影的propller技术应用价值评价