西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约*

2014-04-13 04:24:16邱昆峰李楠RyanTAYLOR宋耀辉宋开瑞韩旺珍张东旭
岩石学报 2014年9期
关键词:辉钼矿造山热液

邱昆峰 李楠 Ryan D TAYLOR 宋耀辉 宋开瑞 韩旺珍 张东旭

QIU KunFeng1,2,LI Nan1,Ryan D TAYLOR2,SONG YaoHui1,SONG KaiRui1,HAN WangZhen3 and ZHANG DongXu3

1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083

2. 美国地质调查局丹佛中心,丹佛 80225

3. 甘肃有色地质勘查局天水总队,天水 741025

1. State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China

2. Denver Federal Center,U. S. Geological Survey,Denver 80225,USA

3. Tianshui General Team of Gansu Nonferrous Metal Geological Exploration Bureau,Tianshui 741025,China

2014-03-01 收稿,2014-05-10 改回.

斑岩系统(包括斑岩型矿床、矽卡岩矿床、碳酸岩交代、沉积岩容矿矿床和浅成低温热液矿床)提供了全世界75%的铜、95% 的钼和相当大部分铅、锌,和金、银等贵金属(Sillitoe,2010),建立精细的斑岩系统成因模型对于寻找更为丰富的金属矿产尤为重要(Chiaradia et al.,2013)。斑岩型矿床的规模及其控制因素是斑岩系统成因研究及找矿勘查的关键问题(Chiaradia et al.,2009b;Deng et al.,2014a,b),在热液系统时限、矿化事件、流体量、金属来源和构造作用等诸多控制因素中,斑岩系统成矿作用时限尤其被重点关注(Valencia et al.,2005;McInnes et al.,2005;Wang et al.,2011;Yang et al.,2007,2008;Chiaradia et al.,2009a)。在诸多建立斑岩系统成因模型的方法中,同位素地质年代学以其可以帮助我们获得金属沉淀时间,进而可置于更为广泛的年代学格架之中而更为关键。同时由于斑岩系统是一个涉及岩浆和热液作用的复杂系统,其持续时限涵盖了上地壳岩浆侵位及相关的热事件、构造和地球动力学过程(Von Quadt et al.,2011;Yang and Badal,2013;Wang et al.,2014b)。因此,斑岩系统成矿作用时限研究就成为明确成因模型和指导矿产勘查的重中之重(Chiaradia et al.,2013;邓军等,2013;Sillitoe,2010)。此外,放射性同位素测年(U-Pb、Re-Os、Ar/Ar 和K/Ar)方法技术和精确度的迅速提高以及在矿床研究中的广泛应用为我们厘定岩浆-热液成矿作用时限提供了可能,从而尝试系统划分斑岩钼矿床类型。

秦岭造山带大地构造位置独特、地质演化复杂和矿产资源丰富,被誉为中国的“金腰带”(陈衍景,2010;Deng et al.,2014c),是研究碰撞造山及其成矿机制的理想地区,斑岩型钼矿床的研究成为构建斑岩系统成因模型和揭示造山带构造演化的“金钥匙”。温泉钼矿床是西秦岭造山带中典型的斑岩型钼矿床(图1b;韩海涛,2009;Zhu et al.,2011),前人研究积累了可靠的印支期成岩、成矿年龄和同位素地球化学数据(李先梓等,1993;张宏飞等,2005;金维浚等,2005;韩海涛,2009;任新红,2009;王飞,2011;Zhu et al.,2009,2011;Cao et al.,2011),认为温泉钼矿床与西秦岭造山带广泛发育的印支期花岗质岩浆事件有关。详细的野外调查发现温泉复式岩体的多期脉动性侵入与温泉钼矿床成因关系密切,因此,更为精细的多期岩浆脉动侵入与钼成矿作用时限的研究对于我们建立更为精细的斑岩系统成因模型具有关键科学意义。本文基于详实的岩体及矿床地质研究,系统分析多元同位素系统封闭温度及其年龄,精细厘定温泉复式岩体多期岩浆事件及温泉钼矿床岩浆-热液演化时限,基于西秦岭中生代地球动力学背景认识,深入探讨温泉钼矿床成岩成矿环境,并结合世界典型斑岩型钼矿床(带)已有研究细化斑岩型钼矿床产出构造背景分类。

1 成矿地质背景

西秦岭造山带西接东昆仑和柴达木板块,北邻祁连造山带,南缘以阿尼玛卿-勉略缝合带为界与松潘-甘孜造山带相接,位于中国大陆构造主要地块与造山带聚集交接的转换部位,受古亚洲、特提斯和环太平洋三大构造动力学体系三面围限(图1a;张国伟等,2001;Dong et al.,2011),地质背景复杂、印支期花岗岩发育、成矿地质条件优越(Mao et al.,2008;陈衍景,2010;Deng et al.,2014c)。

图1 西秦岭造山带地质简图及其主要大地构造单元和中生代花岗质岩石分布(a,据张国伟等,2001;Dong et al.,2011 修编)和温泉复式岩体地质简图(b,据Cao et al.,2011)NCB-华北板块;SCB-华南板块;TLF-郯-庐断裂Fig.1 Simplified regional geological sketch map of the West Qinling Orogen,showing major tectonic units and Mesozoic granitoids within (a,after Zhang et al.,2001;Dong et al.,2011)and geological sketch map of the Wenquan multiphase batholith (b,after Cao et al.,2011)NCB-North China Block;SCB-South China Block;TLF-Tan-Lu Fault

区域主要出露古元古代的秦岭群、中新元古代宽坪群、晚寒武世关子镇蛇绿岩、晚寒武世-早奥陶世李子园群、奥陶纪草滩沟群、中-晚泥盆世的李坝群、晚泥盆纪的大草滩群和第三系、第四系(甘肃省地质矿产局,1989;张国伟等,2001;陈义兵等,2010)。作为中国大陆中部构造岩浆带的重要组成部分(图1a;Li et al.,2013),西秦岭造山带岩浆活动频繁,广泛发生在前寒武纪早期的基底演化至中新生代陆内叠覆造山的各构造演化阶段(Dong et al.,2011),尤以印支期花岗质岩石广泛出露为特征(李永军,2005;Wang et al.,2013),并表现出与带内广泛发育的热液金属矿床的密切时空关系(Deng et al.,2014c)。产于温泉复式岩体中西部的温泉钼矿床系该区内与晚三叠世花岗质岩浆作用有关的具有大型前景的斑岩型钼矿床(韩海涛,2009)。

2 温泉复式岩体

温泉复式岩体位于甘肃省天水市武山县温泉乡和甘谷县古坡乡,地表轮廓似圆形,面积约260km2(图1a),其侵位于中下元古界秦岭群高绿片岩相火山-沉积变质岩系、下古生界李子园群中低绿片岩相火山-沉积变质岩系和中上泥盆统李坝群-大草滩群碳酸岩、砂岩和页岩中(图1b),切穿近EW 向区域性大断裂,断裂的北东盘围岩由片岩、大理岩和蛇绿岩组合组成,南西盘为晚泥盆世大草滩群碎屑沉积岩(李永军,2005)。

基于详细岩相学、侵入体接触关系等特征和前人认识,明确温泉复式岩体由早到晚可划分为5 个单元(图1b),呈同心环状分布,由内向外依次为:Ⅰ单元肉红色中-细粒黑云母花岗岩,出露于淮子下、巩家沟和双录北等地,主要见于岩体内部,一般呈小侵入体分布,细粒花岗结构,未见斑晶;Ⅱ单元灰白色细粒黑云母二长花岗斑岩,出露于陈家大湾、银洞沟、松树湾等地,主要见于岩体内部,偶见斑晶;Ⅲ单元中粒似斑状二长花岗岩,出露于温泉乡、小南岔、庄儿沟和张口石一带,环状分布于岩体次外圈,出露面积占整个岩体20%~25%,以含角闪石矿物为特征,该区的温泉热水源于该套岩石的构造裂隙中;Ⅳ单元中-粗粒黑云母二长花岗岩,环状分布于岩体最外围,出露面积占总岩体面积的40% ~45%,发育巨斑晶、自形程度完好,且有镁铁质岩墙发育;Ⅴ单元似斑状正长花岗岩,呈脉状、条带状散见于早期侵入体中,属岩浆晚期产物。岩体普遍发育镁铁质暗色微粒包体,尤以Ⅲ单元中更为发育(Cao et al.,2011),其中Ⅱ和Ⅲ及其接触带为主要钼矿化体赋存空间(图1b;Zhu et al.,2011)。

自1955 年发现温泉钼矿床以来,甘肃省地质局武山地质队(1976①甘肃省地质局武山地质队. 1976. 武山阳坡山钼矿检查评价报告)采用钾长石K-Ar 法最早获得干池下和济梁沟含矿斑岩年龄分别为420Ma 和527Ma,但地质体时空关系显示岩体均侵入晚泥盆纪大草滩群(图1),显然这些同位素结果有失偏颇,可能是由于后期热液活动导致K-Ar 系统的重置引起的。近年来多位学者(李先梓等,1993;韩海涛,2009;张宏飞等,2005;金维浚等,2005;王飞,2011;Cao et al.,2011;Zhu et al.,2011)对温泉复式岩体含矿Ⅱ和Ⅲ单元的锆石U-Pb 定年和黑云母K-Ar 定年表明其为印支晚期岩浆作用,与西秦岭广泛发育的大规模后碰撞环境动力学背景相一致。

3 温泉矿床地质

温泉钼矿床北以武山-天水-宝鸡深大断裂带与祁连造山带为邻,南以武山-娘娘坝深大断裂带与海西褶皱带相邻(图1)。矿区内出露中下元古界秦岭群、下古生界李子园群、上古生界中泥盆统李坝群、上泥盆统大草滩群、第三系和第四系等,以中下元古界秦岭群和上泥盆统大草滩群为主,各地层之间以不整合或断层接触。矿区构造主要由断裂和节理裂隙组成,共同控制钼矿体的产出(图2a)。矿体形态呈似层状、不规则脉状(图2b),矿石发育细脉状和浸染状构造(图3a,b,g-i),辉钼矿石英脉主要充填于斑岩内原生节理、破碎蚀变带和裂隙中(图3),具有典型的裂隙充填特征,Mo平均品位0.053 ×10-2(韩海涛,2009)。矿石矿物有辉钼矿、黄铁矿和黄铜矿,以及少量方铅矿、闪锌矿、斑铜矿、白钨矿、褐铁矿、钛铁矿等,脉石矿物为石英、钾长石、萤石和方解石等。结合矿物共生及石英硫化物脉穿切关系,划分为5 个阶段(图3a-i):Ⅰ早期贫矿石英脉(EBV),Ⅱ石英-辉钼矿脉(Qz-Mol),Ⅲ石英-黄铁矿脉(Qz-Py),Ⅳ石英-多金属(黄铜矿±黄铁矿±辉钼矿±闪锌矿±方铅矿)脉(Qz-PM)和Ⅴ晚期贫矿石英-方解石脉(LBV)。其中主成矿阶段早期,岩浆尚未完全固结,为不连续和不规律的细脉和网脉,发育单向固结结构(Unidirectional solidification texture,简称UST;图3d),为初始出溶流体冷凝沉淀的产物,暗示温泉钼矿床岩浆-热液过渡期(Harris et al.,2004;Chang and Meinert,2004)。

温泉钼矿床围岩蚀变分带发育良好,从内向外依次为钾化带、绢英岩化带和青磐岩化带并在靠近绢英岩化带附近有轻微的泥化发育,但界限不明显,钼矿(化)体主要分布在钾化带和绢英岩化带(图2a)。钾化带主要蚀变矿物为黑云母、钾长石、石英和绢云母,矿物组合为辉钼矿、黄铜矿和少量黄铁矿、斑铜矿,辉钼矿集合体主要发育在石英脉与围岩接触部位、石英脉内部发育较小集合体(图3c),在围岩内部发育浸染状辉钼矿颗粒(图3a);绢英岩化带发育石英、绢云母和黄铁矿,矿物组合为黄铜矿和少量黄铁矿、斑铜矿、闪锌矿、方铅矿(图3f),大颗粒黄铁矿内部裂隙及边部发育黄铁矿、方铅矿和闪锌矿;青磐岩化带主要蚀变矿物为绿泥石、绿帘石、石英和方解石,发育黄铁矿和黄铜矿(图3e),石英脉中发育大颗粒黄铁矿,且均比较明显发育裂隙,并被后阶段的金属硫化物充填。

4 多元同位素系统地质年龄

图3 温泉斑岩型钼矿床矿石特征及矿物成生世代正文及图中矿物缩写据Whitney and Evans,2010Fig. 3 Photomicrographs of ores from the Wenquan porphyry molybdenum deposit,showing vein stages and features of mineralizationMineral abbreviations through the text,including those in the figures,are after Whitney and Evans,2010

矿床是复杂地质作用的历史产物,形成后又经历了各种变化和改造,当前矿床学研究迫切需要同时开展对成矿作用过程和变化、保存两个方面的工作,以提高矿产预测的能力(翟裕生,2014;Sillitoe,2010;邓军等,2010)。相对单一同位素地质年龄而言,U-Pb(Tc约900℃;Lee et al.,1997;Cherniak and Watson,2000)、K-Ar (Tc约300 ± 50℃;McDougall and Harrison,1999)和Re-Os(Tc介于300 ~500℃;McDougall and Harrison,1999;Suzuki et al.,1996)多元系统具有更广泛的封闭温度区间,可以精确厘定岩体多期岩浆结晶及冷却、成矿热事件年龄(Geyh and Schleicher,1990;邱昆峰和杨立强,2011 及其引文)。岩浆-热液成矿作用发展变化的精细刻画已经成为斑岩系统理论研究与矿产勘查的重要方面(Selby and Cresser,2001;Valencia et al.,2005;Chiaradia et al.,2013;Wang et al.,2014a),并已经在智利、伊朗和印度尼西亚等地的典型斑岩型矿床成功应用(McInnes et al.,2005 及其引文)。为深入理解温泉斑岩型钼矿床的地球动力学背景与成矿环境、精确厘定成矿事件的发生时间与作用时限,本文进一步解释剖析已有锆石U-Pb、黑云母K-Ar 和辉钼矿Re-Os 同位素年龄(表1)。

4.1 岩浆作用

锆石U-Pb 定年系统,以其高封闭温度体系及锆石的强难熔性和相对富含Th 和U 等放射性元素、而贫普通Pb 等特征被认为是目前最精确的定年方法(Begemann et al.,2001;Gradstein et al.,2005;Schoene et al.,2006),尽管我们永远无法知道岩浆在1000℃以上侵位到冷却至~900℃的时间(王非等,2014),但相对于其它同位素系统,其仍然是岩体侵位年龄最准确的反应者。

温泉斑岩型钼矿床含矿岩体(Ⅱ和Ⅲ单元)SHRIMP 及LA-ICP-MS 锆石U-Pb 年龄结果显示其侵位年龄集中在224.6 ±2.5Ma 到216.2 ±1.7Ma,持续约8Myr,明显发育峰期为~223Ma 和~217Ma 的两期岩浆作用(图4)。同时,由于锆石U-Pb 体系的封闭温度明前高于钼成矿作用温度的上限,因此,该年龄代表了含矿岩体的结晶年龄,且与温泉复式岩体在构造、地层等时空关系相吻合,对应西秦岭造山带广泛发育的印支晚期岩浆活动(Wang et al.,2013 及其引文)。

4.2 成矿时间

辉钼矿(MoS2)是许多热液金属矿床中的常见矿物,且为迄今被发现的最富Re 的硫化物,Re 具有亲硫特性且与Mo 具有相似的离子半径,所以在辉钼矿形成过程中Re 以类质同相形式替代Mo 进入辉钼矿晶格中;同时其中的普通Os相对放射成因187Os 可以忽略不计(Suzuki et al.,1996;Markey et al.,2007),也就是说辉钼矿中187Os 完全是187Re 的衰变产物,所以辉钼矿中的187Os 与187Re 的含量关系直接反应其形成年代(Stein et al.,2001);此外,辉钼矿Re-Os 同位素体系封闭良好,受后期高温流体和成矿后热液流体改造微弱(Selby and Creaser,2001),已经被证实在变质环境(Stein et al.,1998)甚至是麻粒岩相(Bingen and Stein,2003)都得以保存,使得辉钼矿Re-Os 系统被认为是目前直接确定金属硫化物矿床成矿年代最有力的定年手段(屈文俊和杜安道,2003;Stein et al.,2003)。

温泉斑岩型钼矿床辉钼矿Re-Os 同位素测年结果显示其模式年龄为212.7 ±2.6Ma 到215.1 ±2.6Ma(表1;图4),考虑到不同年龄结果的误差,其与早期的含矿岩体Ⅲ单元年龄具有明显的重叠(图5),反映了钼成矿作用近于同时或稍晚于Ⅲ单元岩体侵位。

表1 西秦岭造山带温泉斑岩型钼矿床成岩、成矿同位素年龄Table 1 Compilation of the isotopic chronological data for magmatic rocks and mineralization in the Wenquan porphyry molybdenum deposit,West Qinling Orogen

图4 西秦岭造山带温泉斑岩型钼矿床地质年龄锆石U-Pb 年龄引自王飞(2011),张宏飞等(2005),金维浚等(2005),Zhu et al. (2011)和Cao et al. (2011);黑云母K-Ar 年龄引自韩海涛(2009)和李先梓等(1993);辉钼矿Re-Os 年龄引自Zhu et al. (2009)和韩海涛(2009)Fig.4 Geochronology data Wenquan porphyry molybdenum deposit,West Qinling orogenZircon U-Pb ages from Wang (2011),Zhang et al. (2005),Jin et al. (2005),Zhu et al. (2011)and Cao et al. (2011);biotite KAr ages from Han (2009)and Li et al. (1993);molybdenite Re-Os ages from Zhu et al. (2009)and Han (2009)

图5 西秦岭造山带温泉斑岩型钼矿床三叠纪地质、热事件时序简图(时间标度据Dong et al.,2011;Wang et al.,2013;黄雄飞等,2013)灰色阴影区分别代表岛弧环境和后碰撞环境;数据来源同图4Fig.5 Schematic evolution diagram showing the sequences of major geological and thermal events during Triassic at the Wenquan porphyry molybdenum deposit, West Qinling Orogen (the time scales are those of Dong et al.,2011;Wang et al.,2013;Huang et al.,2013)Gray shades represent the arc setting related to subduction of the Mianlue Ocean between the SQL and SCB,and the post-collosion setting between the SQB (or NCB)and SCB,respectively. Data sources as in Fig.4. NCB-North China Block;SCB-South China Block;NQB-North Qinling Block;SQB-South Qinling Block

4.3 岩体冷却

含钾岩石或矿物K-Ar 定年系统需要样品具有同时性和同源性,且在样品形成后保持同位素体系相对封闭,同时所测样品必须具有相同的同位素初始比值(王非等,2014)。若其构成一条良好的通过原点的等时线,表明黑云母在结晶以后,放射成因Ar 在矿物晶格中保存均匀、完好,没有遭受热力扰动,则该年龄为岩体结晶年龄;但该系统很容易受后期构造热事件干扰而部分重置,使得矿物核心部分早期积累的放射性成因Ar 发生部分丢失,其年龄则代表样品重新冷却至黑云母封闭温度(300 ± 50℃;McDougall and Harrison,1999)后所经历的时间(杨立强等,2011;王非等,2014)。Selby and Creaser (2001)对加拿大英属哥伦比亚Endako 斑岩型钼矿床的研究表明经历高温(~440℃)、中等盐度热液流体事件后,岩浆成因的黑云母与热液成因的黑云母具有相一致的年龄,且该年龄与后期低温热液事件响应,反映了斑岩系统后期热液活动对早期岩浆成因黑云母K-Ar 系统的重置。

温泉复式岩体的黑云母K-Ar 年龄集中于226 ~207Ma,并且主要发育峰值为~223Ma 和~208Ma 两组(图4)。尽管~223Ma 这组年龄与温泉岩体含矿Ⅱ单元具有相近的年龄值(图5),但是由于黑云母封闭温度约为300℃,所以该年龄更可能代表的是更早期岩体(温泉复式岩体Ⅰ单元)侵位以后,经历后期热事件,样品重新冷却至300℃(黑云母封闭温度)所经历的时间;同时,~208Ma 年龄也可能代表了含矿Ⅱ单元侵位(~223Ma)以后,受成矿热事件干扰黑云母的结晶年龄,可能代表了该期岩体的冷却年龄。此外,一个216Ma的黑云母K-Ar 年龄与岩浆-热液成矿年龄相吻合(图5),不排除其为热液黑云母对温泉钼矿床成矿热液活动的反应。

5 讨论

5.1 温泉钼矿床成岩成矿环境与构造意义

碰撞造山带的演化一般都要经历挤压、挤压向伸展转变和伸展三个阶段(Leech,2001;Chen et al.,2007;邓军等,2011;Yang et al.,2009,2014),在挤压缩短向伸展减薄的构造体制转换过程中,造山带处于减压增温的特殊构造体制,应力由挤压向伸展转变过程中会引起物质的部分熔融和流体产生,进而导致强烈的流体和岩浆作用,是发生成岩、成矿作用的有利阶段(Vanderhaeghe and Teyssier,2001;Deng et al.,2009;杨立强等,2010,2014a,b)。华北和华南板块的俯冲和/或碰撞造山对应西秦岭造山带早中生代的两期岩浆作用,即岛弧环境的印支早期岩浆作用(250 ~240Ma,Wang et al.,2013;245 ~234Ma,黄雄飞等,2013)和后碰撞环境的印支晚期岩浆作用(225 ~185Ma,Wang et al.,2013;225~205Ma,黄雄飞等,2013)。

温泉岩体侵位于商丹缝合带以南,呈椭圆形,且没有明显的岩浆面理和变形面理,发育暗色闪长质微粒包体且没有明显定向,同时在岩体边界没有明显的接触变形带,这些特征与挤压环境下主动侵位岩体的构造形式明显不同,暗示岩体形成于相对拉张环境下的被动侵位(Wang et al.,2000)。锆石U-Pb 同位素定年显示温泉花岗岩含矿单元侵位于224.6 ±2.5Ma 到216.2 ±1.7Ma,对应区域上后碰撞环境下早中生代晚期岩浆作用,至少比碰撞峰期晚10 ~20Myr,这与Sylverler(1998)对典型碰撞造山带的研究认为后碰撞花岗岩的出现比碰撞峰期年龄晚10 ~15Myr(如阿乐卑期)或26Myr(如喜马拉雅地区)相一致。辉钼矿Re-Os 成矿年代学研究显示钼成矿作用发生于212.7 ±2.6Ma 到215.1 ±2.6Ma,与与成岩年龄有所重叠,反映晚三叠世钼成矿与花岗质岩浆作用密切时空关系,这也与典型斑岩型钼矿床特征(Misra,2000;邓军等,2012)相一致,岩体侵位于碰撞后伸展环境或是由同碰撞向后碰撞的转接阶段,成矿即发生于华南板块与华北板块碰撞造山过程挤压与伸展交替出现、壳幔作用强烈的伸展期(图5),暗示后碰撞造山环境下岩浆-热液成矿作用的持续性。

5.2 温泉钼矿床成矿作用时限

斑岩型钼矿床在时空和成因上都与斑状花岗质岩体有关,是由岩浆在结晶过程中释放出的富金属热液形成的,岩浆-热液在短期内复杂的脉动性活动及可能叠加的构造热事件(构造、蚀变和矿化)使得斑岩系统岩浆-热液演化的确定显得尤为关键(Valencia et al.,2005;McInnes et al.,2005;Chiaradia et al.,2013)。在热液系统时限、矿化事件、流体量、金属来源和构造作用等诸多控制因素中,斑岩系统成矿作用时限尤其被重点关注(Valencia et al.,2005;McInnes et al.,2005;Wang et al.,2011;Yang et al.,2007,2008)。

锆石U-Pb、辉钼矿Re-Os 和黑云母K-Ar 多元同位素体系的联合应用精确厘定了温泉斑岩型钼矿床的岩浆-热液演化时限(图5)。温泉复式岩体Ⅱ(黑云母二长花岗斑岩)和Ⅲ(似斑状二长花岗岩)单元为主要含矿岩体,锆石U-Pb 定年显示其分别侵位于~223Ma 和~217Ma,反映了温泉斑岩型钼矿床岩浆活动的“多期性”。辉钼矿Re-Os 同位素测年显示其具有209.7 ~215.1Ma 的模式年龄,与早期的含矿岩体Ⅲ单元年龄具有明显的重叠,反映了钼成矿作用在时间近于同时或稍晚于该岩体侵位,同时在该岩体内构造裂隙中发育的辉钼矿石英脉发育单向固结结构(图3d),代表了岩浆-热液过渡期初始出溶流体冷凝沉淀的产物。采自温泉岩体不同岩相单元的黑云母K-Ar 年龄主要发育峰值为~223Ma和~208Ma 两组年龄,如前所述,基于地质体明确时空关系,结合多元同位素体系的封闭温度,我们认为,~223Ma 这组年龄可能代表更早期岩体(温泉复式岩体Ⅰ单元)侵位以后,经历后期热事件,样品重新冷却至300℃(黑云母封闭温度)所经历的时间;同时,~208Ma 年龄也可能代表了含矿Ⅱ单元岩体的冷却年龄。单个216Ma 的黑云母K-Ar 年龄可能为热液黑云母,并反应温泉钼矿床成矿时间。

图6 典型斑岩型钼矿床成矿时间及构造背景数据引自秦克章等,2008;Sillitoe,2010;Mao et al. ,2011;Zeng et al. ,2012;Li et al. ,2012;孙燕等,2012 及其引文Fig.6 Mineralization ages and tectonic settings of typical porphyry molybdenium depositsData from Qin et al. ,2008;Sillitoe,2010;Mao et al. ,2011;Zeng et al. ,2012;Li et al. ,2012;Sun et al. ,2012 and references therein

综上所述,岩浆-热液演化时限的厘定反映了温泉复式岩体含矿斑岩岩浆侵位结晶、冷却事件与热液成矿时间上有所重叠,成矿作用时限约8Myr(图5),与鱼池岭超大型斑岩系统(Li et al.,2012)、智利Rio Blanco 斑岩型矿床(Deckart et al.,2005)、Nambijia 金矽卡岩和Pangui 斑岩型铜矿床(Chiaradia et al.,2009b)和冈底斯斑岩成矿带(侯增谦等,2003;李金祥等,2007)岩浆-热液演化过程相似。同时,伴随着热液成矿作用之后岩体的快速冷却,这也与斑岩型矿床岩体浅部地壳热演化特点相吻合(McInnes et al.,2005)。

5.3 细化斑岩型钼矿床产出构造背景分类

就时空分布而言,在世界范围内,斑岩型钼(铜)矿床时空分布广泛,时间上自太古代以来均有成矿,但主要集中于中、新生代;空间上集中分布于环太平洋、特提斯和古亚洲三大构造成矿域(Sillitoe,2010;邓军等,2013;翟裕生,2014)。Climax 型钼矿床主要形成于新生代,一般在70 ~25Ma,多分布在太平洋东岸北部陆缘弧后环境,代表性矿床多产出于Colodaro 钼矿带;Endako 型钼矿床多形成于晚侏罗世(100 ~70Ma)和早白垩世(60 ~50Ma),较年轻的岩浆弧则很少发现该类矿床,以加拿大Boss Mt 和Endako 等矿床为代表(Seedorff et al.,2005)。我国的斑岩型钼(铜)矿床多形成于中生代,东秦岭钼成矿带集中发育233 ~221Ma、148 ~138Ma 和131 ~112Ma 钼矿床,东北地区东兴蒙成矿带则主要产出早三叠世(248 ~242Ma)、侏罗纪(178 ~146Ma)和早白垩世(142 ~131Ma)钼矿床(Mao et al.,2011;Zeng et al.,2012;图6)。

就成矿构造背景而言,Sillitoe(1980)最早根据与成矿有关侵入岩化学成分和构造背景将其划分为与裂谷(弧后环境)有关和俯冲(大陆边缘环境)有关的斑岩型钼矿床,随后又出现花岗闪长岩和花岗岩钼矿床(Mutschler et al.,1981)、钙碱性和碱钙-碱性细脉状钼矿床(Westra et al.,1981)、石英二长岩型和Climax 型钼矿床、Climax 型低F 型和高F 型斑岩型钼矿床(Cox and Singer,1986)和未分异常二长花岗岩和高硅流纹岩-碱性岩系列斑岩型矿床(包括Climax 型、过渡和碱性三个亚类型)(Carten et al.,1993)等多种分类方案。Misra(2000)在总结前人基础上,按照产出环境和矿石品位对产于北美和南美地区的斑岩型钼矿床划分为两种类型:(1)与板块消减有关的、低品位(平均品位为0.066%)Endako 型钼矿。该类型矿床规模较小,具有低F(0.05% ~0.15%)、含少量W、缺少Sn 的特征,有时伴生Cu,代表性矿床有加拿大Cordillera 的Endako 和Boss Mt、美国的Bingham 钼矿;(2)高品位(多数>0.15%)、与板内裂谷有关的Climax 型钼矿床。该类型矿床规模较大,世界上分布较广,富F(0.5% ~5%),以出现萤石和黄玉、常见W 和Sn为特征,一般不伴生Cu。代表性矿床是北美Colorado 矿带的Climax 钼矿(907Mt@ 0.24%)和Henderson 钼矿(727Mt@0.24%),其他矿床还有Pine Grove、Cave Peak 等(Cooke et al.,2005)。

近年来,随着我国东秦岭世界最大钼成矿带及东北地区大量斑岩型钼矿床研究程度的提高(Mao et al.,2011;Zeng et al.,2012;Li et al.,2012 及其引文),已经发现已有斑岩型钼矿床分类不臻完善,因此建立更为完备细化的斑岩型钼矿床产出构造背景显得尤为重要。

目前识别的斑岩型钼(铜)矿床产出构造背景主要有挤压环境和伸展环境两类,前者进一步划分为与大洋俯冲(图7A)和大陆碰撞(图7B)环境(表2),典型代表分别为Endako钼矿床和西藏冈底斯的沙让斑岩型钼矿床(秦克章等,2008)。伸展环境进一步划分为后碰撞(图7C)和陆缘弧后(图7A)及板内裂谷(图7D)伸展背景(表2)。Climax 和Henderson 钼矿床产在陆缘弧后Rio Grande(Sillitoe,2010),与Kula 和Farallon 板块西北向俯冲角度变大有关。Cave Peak 钼矿床产于大陆裂谷。东兴蒙造山带钼矿床分别形成于三叠纪西伯利亚板块和华北板块的同碰撞构造背景(EXMT,图6;大陆碰撞环境,图7B)、侏罗纪伊泽那崎板块向西的斜向俯冲引起的挤压环境(EXMJ,图6;大洋俯冲环境,图7A)和早白垩世中国东部加厚岩石圈拆沉、软流圈上涌等引起的板内伸展环境(EXMK,图6;图7D)。东秦岭世界最大钼矿带发育晚三叠世、晚侏罗-早白垩世和早白垩-中白垩世三期钼成矿作用,对应的地球动力学背景分别为可能与同期碱性岩体有关的陆内拉伸环境(EQLT,图6;主要为热液碳酸盐脉钼矿床)和伊泽那崎板块向西的斜向俯冲引起的挤压环境(EQLJ,图6;大洋俯冲环境,图7A)及中国东部加厚岩石圈拆沉、软流圈上涌等引起的板内伸展环境(EQLK,图6;图7D)。

图7 斑岩型钼(铜)矿床产出构造环境示意图(矿床名称同图6)Fig.7 Schematic diagrams showing the tectonic settings of porphyry Mo-Cu deposits (symbols of deposits as in Fig.6)

表2 细化斑岩型钼(铜)矿床系统分类(矿床名称同图6)Table 2 Revised classification of porphyry molybdenum deposits (symbols of deposits as in Fig.6)

总体来说,在大洋俯冲→大陆碰撞→后碰撞→板内旋回的四个阶段均可以产生规模的斑岩型钼(铜)矿床,其主要形成于旋回起始和结束阶段的偏张性的裂谷和伸展环境,由于该阶段应力比较稳定,更有利于岩浆长时间的结晶分异,由挤压向伸展过渡的构造体制转换是其形成的有利环境(邓军等,2000;Deng et al.,2014a;杨立强等,2014b),因此,世界范围内的Climax 和Henderson 以及东秦岭世界最大斑岩型钼矿带的主要钼成矿均集中于弧后伸展、后碰撞伸展和陆内裂谷等伸展背景。同时,斑岩型钼(铜)矿床多产于靠近大陆内部,表现出与大陆地壳明显的亲和性,基底既可以是古老陆壳的重熔也可以是新生陆壳。同时,对比发现,就产出钼矿床的规模和数量而言,挤压环境也远不如伸展背景。

6 结论

(1)锆石U-Pb 定年显示温泉复式岩体含矿斑岩单元分别侵位于~223Ma 和~217Ma,持续约8Myr;辉钼矿Re-Os 年龄为212.7 ±2.6Ma 到215.1 ±2.6Ma,成矿与成岩同期或稍晚,响应华北与华南板块全面对接后秦岭造山带构造体制由碰撞到后碰撞的转换阶段。

(2)多元同位素定年系统(锆石U-Pb、辉钼矿Re-Os 和黑云母K-Ar 体系)准确刻画岩体侵位、热液成矿与冷却事件有所重叠,岩浆-热液分异演化充分,且具有较高的冷却速率,精确厘定温泉斑岩系统岩浆活动的“多期性”、成矿事件的“瞬时性”和成矿作用的“持续性”。

(3)细化斑岩型钼(铜)矿床分类方案,即产于挤压背景的大洋俯冲和大陆碰撞环境矿床及产于伸展背景的后碰撞、陆缘弧后和板内裂谷环境矿床。

(4)明确在大洋俯冲→大陆碰撞→后碰撞→板内裂谷旋回的四个阶段均可以产生规模的斑岩型钼(铜)矿床,挤压向伸展过渡的构造体制转换阶段以其应力比较稳定,更有利于岩浆长时间的结晶分异,而尤其是大型矿床形成的有利环境。

致谢 论文的完成得益于与Richard J Goldfard 和Heather Lowers 研究员、邱骏挺、孟健寅和张良博士的有益探讨;野外工作得到甘肃有色地质勘查局周俊烈、赵生贵高工等的大力帮助;承蒙两位审稿专家提出建设性的修改意见;在此一并表示衷心的感谢。本论文还得到国家留学基金资助。

Begemann F,Ludwig KR,Lugmair GW,Min K,Nyquist LE,Patchett PJ,Renne PR,Shih CY,Villa IM and Walker RJ. 2001. Call for an improved set of decay constants for geochronological use.Geochimica et Cosmochimica Acta,65(1):111 -121

Bingen B and Stein H. 2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites,S Norway. Earth and Planetary Science Letters,208(3 - 4):181-195

Bureau of Geology and Mineral Resources of Gansu Province. 1989.Regional Geology of Gansu Province. Beijing:Geological Publishing House,1 -692 (in Chinese with English abstract)

Cao XF,Lü XB,Yao SZ,Mei W,Zou XY,Chen C,Liu ST,Zhang P,Su YY and Zhang B. 2011. LA-ICP-MS U-Pb zircon geochronology,geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling,China. Ore Geology Reviews,43(1):120 -131

Carten RB,White WH and Stein HJ. 1993. High-grade granite-related molybdenum systems:Classification and origin. In:Kirkham RV,Sinclair WD,Thorpe RI and Duke JM (eds.). Mineral Deposit Modeling. Geological Association of Canada Special Paper,40:521-554

Chang ZS and Meinert LD. 2004. The magmatic-hydrothermal transition:Evidence from quartz phenocryst textures and endoskarn abundance in Cu-Zn skarns at the Empire Mine,Idaho,USA. Chemical Geology,210(1 -4):149 -171

Chen YB,Zhang GW,Pei XZ,Lu RK,Liang WT and Guo XF. 2010.Discussion on the formation age and tectonic implications of Dacaotan Group in West Qinling. Acta Sedimentologica Sinca,28(3):53 -58 (in Chinese with English abstract)

Chen YJ,Chen HY,Zaw K,Pirajno F and Zhang ZJ. 2007.Geodynamic settings and tectonic model of skarn gold deposits in China:An overview. Ore Geology Reviews,31(1 -4):139 -169

Chen YJ. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen,China. Geology in China,37(4):854 -865 (in Chinese with English abstract)

Cherniak DJ and Watson EB. 2000. Pb diffusion in zircon. Chemical Geology,172(1 -2):5 -24

Chiaradia M,Merino D and Spikings R. 2009a. Rapid transition to longlived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha,Peru). Earth and Planetary Science Letters,288(3 -4):505 -515

Chiaradia M,Vallance J,Fontboté L,Stein H,Schaltegger U,Coder J,Richards J,Villeneuve M and Gendall I. 2009b. U-Pb,Re-Os,and40Ar/39Ar geochronology of the Nambija Au skarn and Pangui porphyry-Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita,44(4):371 -387

Chiaradia M,Schaltegger U,Spikings R,Wotzlaw JF and Ovtcharova M.2013. How accurately can we date the duration of magmatichydrothermal events in porphyry systems? An invited paper.Economic Geology,108(4):565 -584

Cooke DR,Hollings P and Walshe JL. 2005. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology,100(5):801 -818

Cox DP and Singer DA. 1986. Mineral deposit models. U.S. Geological Survey Bulletin,1693:1 -379

Deckart K,Clark AH,Celso AA,Ricardo VR,Berten AN,Mortensen JK and Fanning M. 2005. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposits,Central Chile:Implications of an integrated U-Pb and40Ar/39Ar database.Economic Geology,100(5):905 -934

Deng J,Yang LQ,Sun ZS,Peng RM,Chen XM and Du ZT. 2000. Oreforming dynamics of tectonic regime transformation and multi-layer fluid circulation. Earth Science,25(4):397 -403 (in Chinese with English abstract)

Deng J,Yang LQ,Gao BF,Sun ZS,Guo CY,Wang QF and Wang JP.2009. Fluid evolution and metallogenic dynamic during tectonic regime transition:Example from the Jiapigou gold belt in Northeast China. Resource Geology,59(2):140 -152

Deng J,Yang LQ,Ge LS,Yuan SS,Wang QF,Zhang J,Gong QJ and Wang CM. 2010. Character and post-ore changes,modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan,China. Acta Petrologica Sinica,26(6):1633 -1645 (in Chinese with English abstract)

Deng J,Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys.Acta Petrologica Sinica,27(9):2501 - 2509 (in Chinese with English abstract)

Deng J,Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica,28(5):1349 -1361 (in Chinese with English abstract)

Deng J,Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny:Additionally discussing the temporal-spatial evolution of Sanjiang orogeny,Southwest China. Acta Petrologica Sinica,29(4):1099 -1114 (in Chinese with English abstract)

Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437

Deng J,Wang QF,Li GJ and Santosh M. 2014b. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,doi:10. 1016/j.earscirev.2014.05.015

Deng J,Gong QJ,Wang CM,Carranza EJM and Santosh M. 2014c.Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong’ershan region,central China:An overview with new zircon U-Pb geochronology data on quartz porphyries. Journal of Asian Earth Sciences,79:161 -172

Dong YP,Zhang GW,Neubauer F,Liu XM,Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen,China:Review and synthesis. Journal of Asian Earth Sciences,41(3):213 -237

Geyh MA and Schleicher H. 1990. Absolute Age Determination:Physical and Chemical Dating Methods and Their Application. Berlin:Springer,272 -282

Gradstein FM,Ogg JG and Smith AG. 2005. A Geologic Time Scale 2004. Cambridge:Cambridge University Press,1 -500

Han HT. 2009. Geochemical characteristics and metallogenic prediction of the Wenquan molybdenum deposit in the Western Qinling. Ph.D. Dissertation. Changsha:Central South University,1 -116 (in Chinese with English summary)

Harris AC,Kamenetsky VS,White NC and Steele DA. 2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit,NW Argentina. Resource Geology,54(3):341-356

Hou ZQ,Qu XM,Wang SX,Gao YF,Du AD and Huang W. 2003. The Re-Os age of molybdenites from Gangdese porphyry copper desposits belt,Xizang Plateau:Mineralization age and application of dynamic setting. Science in China (Series D),33(7):609 - 618 (in Chinese)

Huang XF,Mo XX,Yu XH,Li XW,Ding Y,Wei P and He WY.2013. Zircon U-Pb chronology,geochemistry of the Late Triassic acid volcanic rocks in Tanchang area,West Qinling and their geological significance. Acta Petrologica Sinica,29(11):3968 -3980 (in Chinese with English abstract)

Jin WJ,Zhang Q,He DF and Jia XQ. 2005. SHRIMP dating of adakites in western Qinling and their implications. Acta Petrologica Sinica,21(3):959 -966 (in Chinese with English abstract)

Lee JKW,Williams IS and Ellis DJ. 1997. Pb,U and Th diffusion in natural zircon. Nature,390 (6656):159 -162

Leech ML. 2001. Arrested orogenic development: Eclogitization delamination,and tectonic collapse. Earth and Planetary Science Letters,185(1 -2):149 -159

Li JX,Qin KZ,Li GM and Yang LK. 2007. K-Ar and40Ar/39Ar age dating of Nimu porphyry copper orefield in Central Gangdese:Constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting. Acta Petrologica Sinica,23(5):953 - 966 (in Chinese with English abstract)

Li N,Chen YJ,Pirajno F and Ni ZY. 2012. Timing of the Yuchiling giant porphyry Mo system,and implications for ore genesis.Mineralium Deposita,48(4):505 -524

Li N,Chen YJ,Santosh M and Pirajno F. 2013. Compositional polarity of Triassic granitoids in the Qinling Orogen,China:Implication for termination of the northernmost paleo-Tethys. Gondwana Research,doi:10.1016/j.gr.2013.09.017

Li XZ,Yan J and Lu XX. 1993. Granites of Qinling-Dabie. Beijing:Geological Publishing House,1 - 215 (in Chinese with English abstract)

Li YJ. 2005. Collecting and integration of the geological information of granitoids:The application of granitoids of investigation and research in Tianshui area. Ph. D. Dissertation. Xian:Chang’an University,1 -163 (in Chinese with English summary)

Mao JW,Xie GQ,Bierlein F,Qu WJ,Du AD,Ye HS,Pirajno F,Li HM,Guo BJ,Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta,72(18):4607 -4626

Mao JW,Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings:An introduction to the special issue. Ore Geology Reviews,43(1):1 -7

Markey R,Stein HJ,Hannah JL,Selby D and Creaser RA. 2007.Standardizing Re-Os geochronology:A new molybdenite Reference Material (Henderson,USA)and the stoichiometry of Os salts.Chemical Geology,244(1 -2):74 -87

McDougall I and Harrison TM. 1999. Geochronology and Thermochronology by the40Ar/39Ar Method. New York:Oxford University Press,1 -269

McInnes BIA,Evans NJ,Fu FQ and Garwin S. 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry,58(1):467 -498

Misra KC. 2000. Understanding Mineral Deposits. Dordecht/Boston/London:Kluwer Academic Publishing,353 -413

Mutschler FE,Wright EG,Ludington S and Abbott JT. 1981. Granite molybdenite systems. Economic Geology,76(4):874 -897

Qin KZ,Li GM,Zhao JX,Li JX,Xue GQ,Yan G,Su DK,Xiao B,Chen L and Fan X. 2008. Discovery of sharing large-scale porphyry molybdenum deposit,the first single Mo deposit in Tibet and its significance. Geology in China,35(6):1101 -1112 (in Chinese with English abstract)

Qiu KF and Yang LQ. 2011. Genetic feature of monazite and its U-Th-Pb dating:Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrologica Sinica,27(9):2721 -2732 (in Chinese with English abstract)

Qu WJ and Du AD. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion. Rock and Mineral Analysis,22(4):254 -262 (in Chinese with English abstract)

Ren XH. 2009. Geological characteristics and genesis of molybdenum deposits in Wushan County of Gansu. Gansu Metallurgy,31(6):58-61 (in Chinese with English abstract)

Schoene B,Crowley JL,Condon DJ,Schmitz MD and Bowring SA.2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta,70(2):426 -445

Seedorff E,Dilles JH,Proffen JM,Einaudi MT,Zurcher L,Stavast WJA,Johnson DA and Barton MD. 2005. Porpgyry deposits:Characteristics and origin of hypogene features. Ecomonic Geology,100thAnniversary Volume,251 -298

Selby D and Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit,British Columbia,Canada. Economic Geology,96(1):197 -204

Sillitoe RH. 1980. Types of porphyry molybdenum deposits. Mining Magazine,142:550 -553

Sillitoe RH. 2010. Porphyry Copper systems. Economic Geology,105(1):3 -41

Stein HJ,Sundblad K,Markey RJ,Morgan JW and Motuza G. 1998.Re-Os ages for Archean molybdenite and pyrite,Kuittila-Kivisuo,Finland and Proterozoic molybdenite,Kabeliai,Lithuania:Testing the chronometer in a metamorphic and metasomatic setting.Mineralium Deposita,33(4):329 -345

Stein HJ,Markey RJ,Morgan JW,Hannah JL and Scherstén A. 2001.The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova,13(6):479 -486

Stein HJ,Scherstén A,Hannah JW and Markey RJ. 2003. Subgrainscale decoupling of Re and187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta,67(19):3673 -3686

Sun Y,Liu JM and Zeng QD. 2012. An approach to the metallogenic mechanism of porphyry copper (molybdenium) deposits and porphyry molybdenium (copper)deposits:Influence of evolving processes of ore-forming fluids and tectonic settings. Earth Science Frontiers,19(6):179 -193 (in Chinese with English abstract)Suzuki K, Shimizu H and Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan:Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta,60(16):3151 -3159

Sylverler PJ. 1998. Post-collisional Strongly Peraluminous granites.Lithos,45(1 -4):29 -44

Valencia VA,Ruiz J,Barra F,Geherls G,Ducea M,Titley SR and Ochoa-Landin L. 2005. U-Pb zircon and Re-Os molybdenite geochronology from La Caridad porphyry copper deposit:Insights for the duration of magmatism and mineralization in the Nacozari District,Sonora,Mexico. Mineralium Deposita,40(2):175 -191

Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonopgysics,342(3 -4):451 -472

Von Quadt A,Erni M,Martinek K,Moll M,Peytcheva I and Heinrich CA. 2011. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology,39(8):731 -734

Wang CM,Deng J,Carranza EJM and Santosh M. 2013. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature,deposit types,and tectonic setting.Gondwana Research,doi:10.1016/j.gr.2013.05.005

Wang CM,Deng J,Carranza EJM and Lai XR. 2014a. Nature,diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews,56:327 -351

Wang CM,Zhang D,Wu GG,Santosh M,Zhang J,Xu YG and Zhang YY. 2014b. Geological and isotopic evidence for magmatichydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng district,east-central China. Mineralium Deposita,doi:10. 1007/s00126-014-0521-8

Wang F. 2011. The geological and geochemical characteristics of the Wenquan molybdenum deposit in the West Qinling, and its metallogenetic geodynamic setting. Master Degree Thesis. Xi’an:Northwest University,1 -96 (in Chinese with English summary)

Wang F,Shi WB and Zhu RX. 2014. Problems of modern40Ar/39Ar geochronology:Reviews. Acta Petrologica Sinica,30(2):326 -340 (in Chinese with English abstract)

Wang QF,Deng J,Zhang QZ,Liu H,Liu XF,Wan L,Li N,Wang YR,Jiang CZ,and Feng YW. 2011. Orebody vertical structure and implications for ore-forming processes in the Xinxu bauxite deposit,western Guangxi,China. Ore Geology Reviews,39(4):230 -244

Wang T, Wang XX and Li WP. 2000. Evaluation of multiple emplacement mechanisms of Huichizi granite pluton, Qinling orogenic belt,central China. Journal of Structure Geology,22(4):505 -518

Wang XX,Wang T and Zhang CL. 2013. Neoproterozoic,Paleozoic,and Mesozoic granitoid magmatism in the Qinling Orogen,China:Constraints on orogenic process. Journal of Asian Earth Sciences,72:129 -151

Westra G and Keith SB. 1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology,76(4):844 -873

Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187

Yang LQ,Deng J,Ge LS,Wang QF,Zhang J,Gao BF,Jiang SQ and Xu H. 2007. Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula,eastern China:A regional review. Progress in Natural Science,17(2):138 -143

Yang LQ,Deng J,Zhang J,Guo CY,Gao BF,Gong QJ,Wang QF,Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit,Jiaodong gold province,China:Implications for metallogeny and exploration. Journal of China University of Geosciences,19(4):378 -390

Yang LQ,Deng J,Guo CY,Zhang J,Jiang SQ,Gao BF,Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China.Resource Geology,59(2):181 -193

Yang LQ,Liu JT,Zhang C,Wang QF,Ge LS,Wang ZL,Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis:An example from the orogenic gold deposits in Ailaoshan gold belt,Southwest China. Acta Petrologica Sinica,26(6):1723 -1739 (in Chinese with English abstract)Yang LQ,Deng J,Zhao K and Liu JT. 2011. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt,Southwest China:Geochronological constraints. Acta Petrologica Sinica,27(9):2519 -2532 (in Chinese with English abstract)

Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli,China. Journal of Asian Earth Sciences,78:327-344

Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483

Yang LQ,Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In:Chen YT,Jin ZM,Shi YL,Yang WC and Zhu RX(eds.). The Deep-Seated Structures of Earth in China. Beijing:Sciences Press,1006 -1030 (in Chinese)

Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)

Zeng QD,Liu JM,Chu SX,Wang YB,Sun Y,Duan XX,and Zhou LL. 2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt,Northeast China:Characteristics and tectonic setting.International Geology Review,54(16):1843 -1869

Zhai YS. 2014. A preliminary discussion on fundamental model of metallogenic mechanism. Earth Science Frontiers,21(1):1 -8 (in Chinese with English abstract)

Zhang GW,Zhang BR,Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing:Science Press,1 -729 (in Chinese with English abstract)

Zhang HF,Jin LL,Zhang L,Harris N,Zhou L,Hu SH and Zhang BR.2005. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt:Constraints on basement nature and tectonic affinity. Science in China (Series D),50(2):184 -196

Zhu LM,Ding ZJ,Yao SZ,Zhang GW,Song SG,Qu WJ,Guo B and Li B. 2009. Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province,western Qinling. Chinese Science Bulletin,54(16):2309 -2324

Zhu LM,Zhang GW Chen YJ,Ding ZJ,Guo B,Wang F and Lee B.2011. Zircon U-Pb ages and geochemistry of the Wenquan Mobearing granitioids in West Qinling,China:Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit.Ore Geology Reviews,39(1 -2):46 -62

附中文参考文献

陈义兵,张国伟,裴先治,鲁如魁,梁文天,郭秀峰. 2010. 西秦岭大草滩群的形成时代和构造意义探讨. 沉积学报,28(3):53-58

陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质,37(4):854 -865

邓军,杨立强,孙忠实,彭润民,陈学明,杜子图. 2000. 构造体制转换与流体多层循环成矿动力学. 地球科学,25(4):397 -403邓军,杨立强,葛良胜,袁士松,王庆飞,张静,龚庆杰,王长明.2010. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报,26(6):1633 -1645

邓军,杨立强,王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报,27(9):2501 -2509

邓军,王长明,李龚建. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报,28(5):1349 -1361

邓军,葛良胜,杨立强. 2013. 构造动力体制与复合造山作用:兼论三江复合造山带时空演化. 岩石学报,29(4):1099 -1114

甘肃省地质矿产局. 1989. 甘肃省区域地质志. 北京:地质出版社,1 -692

韩海涛. 2009. 西秦岭温泉钼矿床地质化学特征及成矿预测. 博士学位论文. 长沙:中南大学,1 -116

侯增谦,曲晓明,王淑贤,高永丰,杜安道,黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os 年龄:成矿作用时限与动力学背景应用. 中国科学(D 辑),33(7):609 -618

黄雄飞,莫宣学,喻学惠,李小伟,丁一,韦萍,和文言. 2013. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb 年代学、地球化学及其地质意义. 岩石学报,29(11):3968 -3980

金维浚,张旗,何登发,贾秀琴. 2005. 西秦岭埃达克岩的SHRIMP定年及其构造意义. 岩石学报,21(3):959 -966

李金祥,秦克章,李光明,杨列坤. 2007. 冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar 年龄:对岩浆-热液系统演化和成矿构造背景的制约. 岩石学报,23(5):953 -966

李先梓,严振,卢欣祥. 1993. 秦岭-大别山花岗岩. 北京:地质出版社,1 -215

李永军. 2005. 花岗岩类地质信息的采集与集成——在天水地区花岗岩类调查与研究中的应用. 博士学位论文. 西安:长安大学,1 -163

秦克章,李光明,赵俊兴,李金祥,薛国强,严刚,粟登奎,肖波,陈雷,范新. 2008. 西藏首例独立钼矿:冈底斯沙让大型斑岩钼矿的发现及其意义. 中国地质,35(6):1101 -1112

邱昆峰,杨立强. 2011. 独居石成因特征与U-Th-Pb 定年及三江特提斯构造演化研究例析. 岩石学报,27(9):2721 -2732

屈文俊,杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试,22(4):254 -262

任新红. 2009. 甘肃武山温泉钼矿床地质特征及成因. 甘肃冶金,31(6):58 -61

孙燕,刘建明,曾庆栋. 2012. 斑岩型铜(钼)矿床和斑岩型钼(铜)矿床形成机制探讨:流体演化及构造背景的影响. 地学前缘,2012,19(6):179 -193

王非,师文贝,朱日祥. 2014.40Ar/39Ar 年代学中几个重要问题的讨论. 岩石学报,30(2):326 -340

王飞. 2011. 西秦岭温泉钼矿床地质-地球化学特征与成矿动力学背景. 硕士学位论文. 西安:西北大学,1 -96

杨立强,刘江涛,张闯,王庆飞,葛良胜,王中亮,张静,龚庆杰.2010. 哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探. 岩石学报,26(6):1723 -1739

杨立强,邓军,赵凯,刘江涛. 2011. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报,27(9):2519 -2132

杨立强,邓军,王中亮. 2014a. 胶东金矿控矿构造样式:地质-地球物理综合约束. 见:陈运泰,金振民,石耀霖,杨文采,朱日祥主编. 中国大陆地球深部结构与动力学研究——庆贺滕吉文院士从事地球物理研究60 周年. 北京:科学出版社,1006 -1030

杨立强,邓军,王中亮,张良,郭林楠,宋明春,郑小礼. 2014b. 胶东中生代金成矿系统. 岩石学报,30(9):2447 -2467

翟裕生. 2014. 试论矿床成因的基本模型. 地学前缘,21(1):1 -8

张国伟,张本仁,袁学诚,肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京:科学出版社,1 -729

张宏飞,靳兰兰,张利,Nigel Harris,周炼,胡圣虹,张本仁. 2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd 同位素组成对基底性质及其构造属性的限制. 中国科学(D 辑),35(10):914 -926

猜你喜欢
辉钼矿造山热液
黑龙江省造山带研究:关于洋壳俯冲造山和陆壳碰撞造山磨拉石的认识*
现代矿业(2022年9期)2022-10-14 15:03:40
安徽泾县湛岭斑岩型钼矿床中铼的赋存状态研究*
岩石学报(2021年9期)2021-10-29 10:14:18
柴达木盆地北缘造山型金矿成矿条件及找矿潜力
新型高效辉钼矿抑制剂及其作用机理研究①
矿冶工程(2020年6期)2021-01-30 07:23:26
热处理辉钼矿光催化原位还原银离子的研究
硅酸盐通报(2020年9期)2020-10-17 08:14:24
与侵入岩有关的金矿床与造山型金矿床的区别
非洲东南部造山型金矿成矿环境与资源潜力分析
塔东热液地质作用机制及对储层的改造意义
层结背景下热液柱演化的实验模拟*
海洋与湖沼(2017年6期)2017-03-31 06:18:19
热液循环助采洗井装置的分析与应用
石油知识(2016年2期)2016-02-28 16:20:19