内蒙古中部构造混杂带晚古生代-早中生代变质基性岩的地球化学特征及其大地构造意义*

2014-04-11 02:01张晋瑞初航魏春景王康
岩石学报 2014年7期
关键词:基性岩图解玄武岩

张晋瑞 初航 魏春景 王康

1.北京大学地球与空间科学学院,北京 1008712.天津地质矿产研究所,天津 3001701.

1 引言

中亚造山带是位于西伯利亚克拉通和华北克拉通及塔里木克拉通之间的一个巨大的增生造山带,以新元古代到中生代一系列的岛弧,弧前或弧后盆地,构造混杂带以及微陆块为特征(Sengöretal.,1993; Xiaoetal.,2003,2009; Li,2006; Kröneretal.,2007; Xuetal.,2013; Tangetal.,2013)。构造混杂带作为中亚造山带东段的重要岩石单元,在内蒙古中部地区可分为南、北两带,其中南带下部主要为绿片岩相变质的基性火山岩以及少量超基性岩和辉长、辉绿岩,局部出现蓝片岩,上部以含铁变质碎屑岩系为主(唐克东,1983;徐备等,2001);北带为一套石英片岩、石英岩、含铁石英岩、基性火山岩并夹少量薄层状大理岩,局部出现以岩块形式保存的超基性岩和蓝片岩(徐备等,2001)。多数学者认为它们代表早古生代经历俯冲作用的洋壳残片,并建立了南、北双向俯冲的沟-弧-盆体系(邵济安,1991; 唐克东,1992; Xiaoetal.,2003; Jianetal.,2008; Xuetal.,2013)。近年来对混杂带的定年研究似乎支持这种认识:De Jongetal.(2006)用Ar-Ar定年的方法得到南带乌兰沟地区的石英糜棱岩中多硅白云母年龄为453.2±1.8Ma和449.4±1.8Ma;李承东等(2012)通过锆石U-Pb年代学方法确定南带温都尔庙地区变质安山岩形成年龄为470±2Ma,上部石英岩的形成年龄为445~480Ma。值得注意的是,徐备等(2001)从北带的蓝片岩中得到了383Ma的蓝闪石Ar-Ar年龄,并将其作为洋壳俯冲或碰撞的时代,但陈斌等(2009)对该蓝片岩进行锆石U-Pb定年显示其原岩至少形成于280~318Ma之后,因此蓝片岩的Ar-Ar定年结果值得怀疑。唐克东(1992)在南带乌兰沟地区的蓝片岩中得到钠质闪石年龄为446±15Ma,但初航等(2013)对该变质基性火山岩(蓝片岩)定年研究发现其中的锆石均为捕获锆石,年龄变化从晚太古代到早中生代,最小的一组年龄(246~261Ma)限定该变质基性火山岩的原岩形成于晚二叠世-早三叠世或之后。

尽管对于内蒙古中部构造混杂带的研究已取得大量研究进展,但是许多重要的科学问题仍然没有得到解决。到目前为止,对混杂带中晚古生代-早中生代的变质基性岩尚缺乏有力的地球化学制约,因而其形成的构造环境不明确。它是否能够代表典型的大洋洋壳,还需要进一步予以论证。因此,本文选择混杂带中的变质基性岩,在详细野外地质调查和岩相学研究的基础上,重点研究其地球化学特征,慎重选择地球化学指标和相关判别图解,探讨变质基性火山岩的原岩性质和构造环境。

2 区域地质背景和样品特征

内蒙古中部构造混杂带呈东西向不连续分布,面积达3000km2,南带位于乌兰沟-图林凯地区,其南侧为白乃庙岛弧岩系;北带位于芒和特-二道井-红格尔一线,其北侧为宝力道岛弧增生杂岩带。Xiaoetal.(2003)据此划分出温都尔庙俯冲增生杂岩和二道井增生杂岩带,Xuetal.(2013)则称之为南、北“双俯冲”造山带(图1a)。区域出露地层主要有新元古代艾力格庙群、晚志留世-早泥盆世西别河组、泥盆纪色日巴彦敖包组、石炭纪本巴图组和阿木山组、二叠纪哲斯组和大石寨组以及锡林郭勒杂岩。中生代火山-沉积地层多不整合覆盖在古生代及以前地质体之上。侵入岩包括宝力道古生代岛弧花岗岩类(Chenetal.,2000)、三叠纪花岗岩(石玉若等,2007),古生代斜长角闪岩和斜长花岗岩(Jianetal.,2008)等(图1b)。

研究样品采自南带乌兰沟、图林凯和北带芒和特、瑙木浑尼地区,采样位置如图1c-e所示。南带被划分到温都尔庙群,分为两个组:上部哈尔哈达组主要由绢云绿泥石英片岩、含铁石英岩夹大理岩透镜体组成;下部桑达来因组由变质玄武岩、硅铁质岩、碳酸岩、蛇纹岩透镜体及辉长辉绿岩组成,Chuetal.(2013)将其中的变质玄武岩分弱变形(WD03-1/2,GPS: 42°35′14.03″N,113°04′14.68″E)和强变形(WD04-2,GPS: 42°35′39.12″N,113°00′53.50″E; WD05-1/2/3,GPS: 42°29′21.60″N,113°14′19.92″E)两类:弱变形变质玄武岩局部保留枕状构造,并发育气孔和杏仁体(图2a);强片理化变质玄武岩为千枚状构造,鳞片粒状变晶结构,主要矿物有阳起石、绿帘石、绿泥石、碳酸盐和少量蓝闪石(图2b)。

混杂岩北带在芒和特地区由基质和岩块构成,基质为绢云石英片岩和绿泥石英片岩,岩块为变质基性岩、石英岩、片理化灰岩、片理化辉长岩和片理化花岗岩等。混杂带南部被划分到温都尔庙群,主要由绢云石英片岩、二云母石英片岩、互层状产出的石英岩和变质基性岩组成(图2c)。变质基性岩样品主要为钠长阳起片岩、钠长角闪片岩。钠长阳起片岩为片状构造,粒状鳞片纤柱状变晶结构,由阳起石、钠长石、绿泥石、绿帘石或黝帘石组成(XL06,GPS: 42°59′28.41″N,111°18′40.91″E; XL07-1/2,GPS: 42°57′47.08″N;111°19′39.74″E)。钠长角闪片岩(XL01,GPS: 42°59′59.66″N,111°19′40.78″E;XL02,GPS: 42°59′51.50″N,111°21′4.33″E;XL03,GPS: 42°59′56.36″N,111°21′2.06″E;XL08,GPS: 42°57′41.88″N,111°18′33.19″E)主要由钙质角闪石和少量钠钙质角闪石、钠长石、绿帘石和少量的石英组成。其中样品XL08中的角闪石以冻蓝闪石为主,钠长石呈变斑晶产出,包裹细粒石榴石、角闪石和绿帘石等,包裹体残缕弯曲呈“雪球”结构。(图2d)。

混杂带北带在瑙木浑尼地区同样由基质和岩块组成,基质为变质火山岩和变质细砂岩,岩块包括硅质白云岩、大理岩,石英片岩,超基性岩和蓝片岩(Xuetal.,2013)。混杂带南部被划分到温都尔庙群,以石英片岩、石英岩、含铁硅质岩夹薄层状大理岩为特征,并含一定数量的变质基性火山岩。采集的变质基性岩样品均为蓝片岩。样品(14A/B/C/D,GPS: 43°27′34.68″N, 113°32′4.83″E)呈深蓝灰色(图2e),具纤状粒状变晶结构,主要由钠长石、蓝闪石、绿帘石、绿泥石、榍石以及少量石英组成。蓝闪石具浅蓝-蓝紫多色性,局部发生绿泥石化(图2f)。

3 测试方法

样品的测试处理流程:首先将样品用蒸馏水洗净,然后用特制的刚玉瓷无污染颚式破碎机粗、中碎,用玛瑙球磨机细碎至200目(0.74mm)以下;样品的主量元素分析在中国地质大学(北京)地质过程与矿产资源国家重点实验室利用ICP-OES法测试,测试精度为1%~3%;微量元素(稀土元素)分析在北京大学造山带和地壳演化教育部重点实验室利用ICP-MS法进行,测试精度为2%~12%。

4 分析结果

4.1 主量元素特征

内蒙古中部构造混杂带中变质基性岩全岩地球化学分析数据见表1。经烧失量矫正后SiO2=49.02%~57.02%,Al2O3=10.66%~14.97%,应属于低铝玄武岩系列,岩石相对低钛贫钾,TiO2=1.27%~2.66%,K2O低至0.02%~0.71%,Mg#介于0.42~0.60之间。Na2O/K2O=6.89~454.25, 表明样品在变质作用发生前可能存在细碧角斑岩化。

图1 内蒙古中部混杂带的构造位置(a,据Xu et al.,2013修改)、分布图(b,据李承东等,2012修改)和南北带的地质简图及采样位置(c,据Chu et al.,2013修改;d,e,据Xu et al.,2013修改)图(a)中:SMM-南蒙微大陆;SME-额尔古纳地块南缘;NOB-北造山带;SOB-南造山带;NCC-华北克拉通;HB-浑善达克地块Fig.1 Tectonic position (a,after Xu et al.,2013) and geological sketch map of the Central Inner Mongolia showing distribution of the mélange zones (b,after Li et al.,2012),and the geological map and sample locations of the southern and northern belt of the mélange zones,Central Inner Mongolia (c,after Chu et al.,2013; d,e,after Xu et al.,2013)In Fig.1a: SMM-South Mongolian Microcontinent; SME-Southern Margin of the Ergun block; NOB-Northern Orogenic Belt; SOB-Southern Orogenic Belt; NCC-North China Craton; HB-Hunshandake Block

图2 内蒙古中部构造混杂带中的变质基性岩的岩相学特征(a,b源自Chu et al.,2013)Ab-钠长石;Brs-冻蓝闪石;Cc-方解石;Chl-绿泥石;Ep-绿帘石;Gln-蓝闪石;Grt-石榴石;Mu-白云母;Spn-榍石Fig.2 Occurrence and microphotographs of meta-basic volcanics in the southern and northern belt of the mélange zones,Central Inner Mongolia (a,b,from Chu et al.,2013)

TAS图解(图3a)显示多数样品点位于亚碱性玄武岩区域,少数样品位于碱性玄武岩或安山岩区域;Zr/TiO2-Nb/Y图解(图3b)中同样显示亚碱性玄武岩到碱性玄武岩的过渡特征;在FeOT/MgO-SiO2图解(图3c)中所有亚碱性玄武岩都位于拉斑系列;在FeOT/MgO-TiO2图解(图3d)中多数样品投入MORB区域,少数位于OIB及其边界区域。

4.2 稀土元素特征

表1内蒙古中部构造混杂带中变质基性岩的主量元素(wt%)和微量元素(×10-6)组成
Table 1Major (wt%) and trace element (×10-6) compositions of meta-basic volcanics in the Ondor Sum Group

样品号WD03⁃1WD03⁃2WD04⁃2WD05⁃1WD05⁃2WD05⁃3XL01XL02XL03XL06XL07⁃1XL07⁃2XL08⁃2AXL08⁃2BXL14AXL14BXL14CXL14D位置温都尔庙⁃图林凯地区(南带)∗芒和特地区(北带)苏尼特左旗地区(北带)SiO241 9138 0444 0448 0746 2447 8647 4846 3848 0749 3550 8749 0948 0346 8647 9151 5943 4057 02Al2O314 9713 9713 9514 3214 6413 7414 3013 3714 5214 3215 8913 4915 1814 9712 0813 0111 0010 66FeOT8 637 998 4013 8614 2113 4912 9013 8912 8010 7811 2612 2910 5210 7711 4113 148 2313 04CaO11 1913 459 166 067 499 238 877 338 477 614 237 939 558 5912 957 3315 105 38MgO6 055 257 006 606 396 336 927 536 777 295 094 994 985 773 834 774 134 40K2O0 020 470 010 030 030 030 470 400 200 370 560 710 470 490 150 780 120 38Na2O4 203 263 633 272 992 492 713 852 662 853 853 332 893 271 021 513 662 67TiO21 271 731 601 961 851 682 031 962 171 502 482 181 972 022 242 661 122 13P2O50 160 280 240 170 150 170 040 250 070 020 220 150 260 260 280 390 080 35MnO0 140 130 320 190 200 190 220 260 160 170 140 240 180 190 220 200 170 17LOI10 5114 5310 713 944 233 302 153 162 704 154 504 034 034 936 462 9311 902 35Total99 0599 1099 0698 4798 4298 5198 0998 3898 5998 4199 0998 4398 0698 1298 5598 3198 9198 55Rb2 039 360 720 851 281 3810 948 334 3312 5319 1614 3411 699 976 2731 205 3511 30Sr149 0182 0123 0150 0181 0284 0297 1160 5286 7203 5152 0275 0385 1259 0552 0399 0275 0223 0Ba22 4033 6013 1018 9016 1016 20126 445 3631 5441 30160 1381 9154 3162 252 70219 044 10119 0Nb8 2317 6018 706 215 536 144 7815 323 312 265 094 2919 7219 4316 8020 604 1615 50Ta0 541 181 220 420 360 400 270 940 280 210 370 321 301 211 161 400 281 15Zr86 40133 0110 0117 0102 0114 0119 8143 6129 592 33140 2137 2122 4122 1140 0195 067 50145 0Hf2 543 693 143 663 253 614 034 344 322 994 714 443 603 624 315 191 912 37Ga13 0013 0014 7020 3020 4020 0019 5117 9422 8015 8522 4018 3623 8521 3910 9016 407 7621 10Th0 691 571 480 460 380 460 361 760 270 170 420 372 222 232 042 520 421 67La8 4813 5012 506 235 456 375 0114 634 402 765 323 6615 7816 2619 1019 604 3615 70Ce17 7027 6025 7015 9013 9016 2014 2730 6313 839 0616 0411 7733 3434 4845 9050 0013 2033 40Pr2 764 503 842 862 552 952 424 312 401 612 782 034 234 395 886 441 944 59Nd11 8019 0016 0013 9012 5014 3012 8919 3713 159 1014 8811 2118 4819 1226 9029 6010 1020 80Sm2 914 293 834 233 814 314 465 274 573 125 273 944 774 946 747 693 135 63Eu1 081 511 401 561 481 561 571 981 621 111 811 461 731 782 112 411 161 75Gd3 114 404 155 034 615 156 286 546 414 357 215 485 455 647 428 553 566 14Tb0 570 690 700 970 890 981 191 151 240 821 391 080 870 911 341 560 721 27Dy3 764 124 326 535 986 627 867 048 265 419 137 345 035 258 6010 104 847 71Ho0 770 800 831 341 221 361 751 481 881 191 991 671 011 061 822 101 051 64Er2 252 262 343 953 583 955 003 985 413 365 604 892 672 785 166 063 024 62Tm0 380 360 370 670 600 670 700 520 750 490 770 730 370 380 720 840 420 78Yb2 692 592 604 804 314 764 713 264 863 165 144 972 282 384 765 562 824 65Lu0 400 380 380 720 640 700 690 470 690 470 750 750 330 340 700 820 420 71Y18 0020 0020 7033 7031 1035 0045 3340 3149 0729 3048 8142 5425 6426 6547 8054 7027 6046 80Eu∗1 091 051 071 031 081 010 911 030 910 920 900 961 041 030 910 911 060 91Ce∗0 880 850 890 900 890 900 980 921 011 020 991 030 960 971 031 071 090 94∑REE58 6686 0078 9668 6961 5269 8868 80100 669 4846 0078 0860 9896 3599 71137 2151 350 74109 4(La/Yb)N2 133 513 240 880 850 900 723 020 610 590 700 504 684 602 712 381 042 28Hf/Ta4 703 132 578 719 039 0314 844 6515 1814 3312 7213 962 773 003 723 716 822 06Mg#0 560 540 600 460 440 460 490 490 490 550 450 420 460 490 370 390 470 38

注:*南带变质基性岩数据源自Chuetal., 2013

图3 内蒙古中部构造混杂带中变质基性岩的主量元素相关分类图解(a)TAS图解(据Cox et al.,1979);(b)Zr/TiO2-Nb/Y图解(据Winchester et al.,1976);(c)FeOT/MgO-SiO2图解(据Miyashiro,1974);(d)FeOT/MgO-TiO2图解(据Glassley et al.,1974)Fig.3 The discrimination diagrams related to major elements for meta-basic volcanics in the mélange zones,Central Inner Mongolia

内蒙古中部构造混杂带中变质基性岩的稀土元素含量变化范围较大,但根据稀土总量及相关比值显示其存在内在差异,每个地区的变质基性岩均可进一步分为稀土含量相对较低、轻重稀土分异不明显的Ⅰ类(∑REE=46.00×10-6~78.08×10-6,(La/Yb)N=0.50~1.04)和稀土含量相对较高、轻重稀土分异明显的Ⅱ类(∑REE=58.66×10-6~151.3×10-6,(La/Yb)N=2.28~4.68)。球粒陨石标准化的REE配分图解(图4a,c,e)中,Ⅰ类轻稀土弱亏损,曲线整体呈平坦型,总体特征类似于N-MORB;Ⅱ类为轻稀土微弱富集,重稀土相对亏损的右倾型式,与E-MORB相似。以上特征反应了Ⅱ类可能有更加富集的源区成分的加入。两类配分型式均无明显Eu负异常。

4.3 微量元素特征

在微量元素分析表(表1)中,内蒙古中部构造混杂带中变质基性岩的微量元素含量均大于原始地幔值。利用元素Zr作横坐标,REE、Ti、Th、Hf、Ta等高场强元素作纵坐标作图(图5)结果显示Zr与这些高场强元素具有很好的正相关性。原始地幔标准化的微量元素配分图解(图4b,d,f)中,各样品的Ta和Nb没有明显负异常。根据高场强元素Hf/Ta比值和配分图解的型式仍可将每个地区的变质基性岩划分为Ⅰ型和Ⅱ型。其中Ⅰ型具有近平坦或微弱的左倾正斜率亏损型的配分型式,Hf/Ta=6.82~15.18,与N-MORB相当(Hf/Ta>5),部分Ⅰ型的变质基性岩轻微富集大离子亲石元素Rb和Ba,暗示可能有少量陆壳成分的加入;Ⅱ型具右倾负斜率富集型的曲线特征,Hf/Ta=2.06~4.70,与E-MORB类似(Hf/Ta<5)。在Nb/Yb-Th/Yb图解中(图6a),变质基性岩具N-MORB和E-MORB特征,且有微弱的地壳混染趋势;在DF1/DF2图解(图6b)中,所有样品集中投入MORB区域;Hf/3-Th-Nb/16(图6c)和Ti-Zr-Y×3图解(图6d)显示所有样品均投到了MORB(N/E-MORB)及板内玄武岩的区域,具有连续的过渡特征。

图4 内蒙古中部构造混杂带中变质基性岩的球粒陨石标准化稀土元素配分图解和原始地幔标准化微量元素蛛网图(球粒陨石、原始地幔、OIB、E-MORB和N-MORB均引自Sun and McDonough,1989)Fig.4 Chondrite-normalized REE and primitive mantle-normalized trace element diagrams for meta-basic volcanics in the mélange zones,Central Inner Mongolia (data of chondrite,primitive mantle,OIB,E-MORB and N-MORB from Sun and McDonough,1989)

5 讨论与结论

5.1 内蒙古中部构造混杂带中变质基性岩形成的构造环境

内蒙古中部构造混杂带中的变质基性岩普遍发育绿片岩相变质,局部达到蓝片岩相,从玄武岩变成绿(蓝)片岩需要大量流体注入(魏春景和崔莹,2011)。低级变质流体中可以携带水溶元素,但对高场强元素和稀土元素携带能力有限。本文利用Zr与REE、Ti、Th、Hf、Ta的相关图解(图5)显示这些元素与Zr分别具有很好的正相关性,基本反映原岩特征,因此可以用来示踪源区。虽然K、Na被认为在多数地质过程中具有活动性,但样品在Zr/TiO2-Nb/Y图解(图3b)与TAS图解(图3a)中显示类似的岩浆系列,说明它们仍然可反映原岩的某些性质。

混杂带中变质基性岩的地球化学特征类似于N-MORB和E-MORB。相关构造判别图解显示这些变质基性岩应为洋中脊玄武岩,代表一个小型的陆间洋盆。部分变质基性岩保留完好的枕状构造,夹有超基性岩、硅铁质岩层以及碳酸盐岩透镜体,也说明洋盆可能存在,但不会太深。Chuetal.(2013)在变质玄武岩中发现大量来自陆壳的岩浆锆石,也说明当时洋盆规模是有限的。

图5 内蒙古中部构造混杂带中变质基性岩Zr与主(TiO2)、微量元素(La、Sm、Nd、Nb、Ta、Hf)相关图Fig.5 Zr vs.selected major (TiO2) and trace elements (Th,La,Sm,Nd,Gd,Ta,Hf) variation diagrams for meta-basic volcanics in the mélange zones,Central Inner Mongolia

前人研究表明内蒙古中部构造混杂带中的变质基性岩应形成于晚二叠世到早三叠世(陈斌等,2009;Chuetal.,2013),北带芒和特地区的变质基性岩虽然没有年代学数据,但从地球化学显示的构造环境来看,也应该是晚古生代之后的产物。而近乎相同时期,内蒙中部发育有哲斯组和林西组碎屑沉积。哲斯组为一套砂岩、页岩和碳酸盐组合,为浅海相的环境;林西组以特有的黑灰色砂岩、板岩为特征,为一套泻湖相碎屑沉积。哲斯组和林西组近东西向分布于混杂带的南北两侧或附近,从MORB型变质基性岩到哲斯组、林西组碎屑沉积反映该有限洋盆从深海相到浅海-海陆交互相的空间变化。

5.2 区域构造演化

图6 内蒙古中部构造混杂带中变质基性岩的构造判别图解(a,据Pearce,2008;b,据Agrawal et al.,2008;c,据Wood,1980;d,据Pearce and Cann,1973)IAT-岛弧拉斑玄武岩;CAB-钙碱性玄武岩;WPT-板内拉斑玄武岩;WPA-板内碱性玄武岩;WPB-板内玄武岩Fig.6 Discrimination diagram for the tectonic environment of meta-basic volcanics in the mélange zones,Central Inner Mongolia (a,after Pearce,2008;b,after Agrawal et al.,2008;c,after Wood,1980;d,after Pearce and Cann,1973)

很多学者认为古亚洲洋一直持续到晚古生代末-早中生代才最终闭合(Xiaoetal.,2003,2009; Chenetal.,2009; Jianetal.,2008,2010; Caoetal.,2013)。主要证据有:(1)内蒙古中部贺根山和索伦山蛇绿岩带中的超镁铁质岩石中得到300~250Ma的SHRIMP年龄,被认为代表晚古生代的古亚洲洋洋壳(Xiaoetal.,2003,2009; Miaoetal.,2008; Jianetal.,2010);(2)苏左旗白音宝力道石英闪长岩(309Ma,Chenetal.,2000,2009)、西乌珠穆沁旗达其浑迪、金星石英闪长岩(325±3Ma和322±3Ma,刘建峰等,2009)、白音高勒石英闪长岩(313±5Ma~323±4Ma,鲍庆中等,2007)等为钙碱性I型系列,被认为是晚古生代古亚洲洋持续俯冲的岛弧岩浆产物(Chenetal.,2000,2009)。

但很多研究结果并不支持上述观点。王成文等(2009)通过对内蒙古及东北地区哲斯腕足群的研究认为整个内蒙及东北地区在晚古生代应属于一个稳定地块,即佳-蒙地块。而内蒙中部在石炭纪发育稳定的浅海相沉积,代表围绕佳蒙地块核心呈环状分布的晚古生代陆缘碎屑沉积。很多证据表明内蒙中部早二叠世为伸展型大地构造背景:早二叠世(295~270Ma)内蒙中部发生了大范围的高碱性花岗岩的侵位(洪大卫等,1994);锡林浩特地区也发现了大量A型花岗岩(施光海等,2004);二叠纪大石寨组火山岩在区域上呈面状分布,具有双峰式的特征(Zhuetal.,2001; Zhangetal.,2008);位于满都拉地区二叠纪基性岩形成于“红海”型的裂谷环境(晨辰等,2012)。区域地质特征显示内蒙中部晚古生代钙碱性I型岩浆岩多为分散或孤立的一套多期深成岩或岩席,且深成作用持续的时间很短,没有与之同时期伴生的大规模安山质和英安质火山岩,因此这些所谓的“岛弧岩浆岩”可能代表加里东I型,即造山期后隆起型,并不代表真正的岛弧岩浆。综合以上分析,在石炭纪之前,内蒙中部地区的古亚洲洋已经结束演化,随后应处于后碰撞环境。

很多有力的证据支持古亚洲洋的碰撞闭合应发生在晚泥盆-早石炭世。Tang (1990)依据缝合带的岩石组合和沉积相分析认为西伯利亚板块与华北板块的碰撞发生在泥盆纪之前;邵济安(1991)根据晚古生代地层的沉积相、蛇绿岩的特征认为俯冲作用在石炭纪已经完成;Xuetal.(2013)提出内蒙中部存在双俯冲碰撞,强调南部造山带中晚志留世的西别河组前陆磨拉石建造不整合覆盖在混杂带和徐尼乌苏组复理石建造之上,北部造山带中-晚泥盆世的色日巴彦敖包组磨拉石不整合覆盖在混杂带之上,因而认为古亚洲洋的闭合应发生在晚泥盆世。分布于内蒙中部的锡林郭勒杂岩发生高角闪岩相变质作用的年龄为337Ma(薛怀民等,2009),应该与古亚洲洋在晚泥盆-早石炭世的碰撞闭合有关。

古亚洲洋闭合后,到晚古生代内蒙中部成为佳-蒙地块的一部分,石炭纪期间整个内蒙古中部发育稳定的浅海相沉积,局部为造山后隆起环境,发育加里东I型花岗岩和花岗闪长岩。从晚石炭世-早二叠世开始内蒙中部处于伸展环境,发育大量的碱性岩、碱性花岗岩及双峰式火山岩(洪大卫等,1994; Zhuetal.,2001; 施光海等,2004; Zhangetal.,2008; Mengetal.,2011),到中二叠世开始裂解形成若干近东西向分布的海盆,发育哲斯组、林西组浅海相、泻湖相沉积。持续的伸展形成了有限洋盆,发育多处晚古生代的镁铁质-超镁铁质岩,如混杂带中晚古生代-早中生代的变质基性岩、满都拉地区二叠纪基性岩(晨辰等,2012)、贺根山蛇绿岩等。西拉木伦断裂带内发育的大规模早中生代酸性侵入体,如方框子和双井子单元中264Ma和229~237Ma的S型花岗岩(李益龙等,2009),意味着到晚二叠世-早三叠世之后,有限洋盆最终闭合(Caoetal.,2013)。对于闭合的机制,笔者认为大约相同时期(早中三叠世),华北板块与扬子板块实现全面碰撞和陆内造山而形成大别-苏鲁造山带(Zheng,2012),这种强大动力可能通过刚性的华北板块传递到北缘,使得有限洋盆发生被动的闭合。这种闭合导致内蒙中部南、北构造混杂带的形成,继而引发混杂带中晚古生代-早中生代基性岩以及整个内蒙中部的晚古生代沉积发生广泛的绿片岩相变质作用,而局部蓝片岩的形成可能与有限洋盆的俯冲作用有关。

致谢感谢中国地质大学(北京)秦红老师在主量元素分析方面、北大地空学院古丽冰老师在微量元素分析方面的帮助;感谢北大地空学院钱加慧、李瑞彪对本项研究的建议与帮助。

Agrawal S,Guevara M and Verma SP.2008.Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements.International Geology Review,50(12): 1057-1079

Bao QZ,Zhang CJ,Wu ZL,Wang H,Li W,Sang JH and Liu YS.2007.SHRIMP U-Pb zircon geochronology of a Carboniferous quartz diorite in Baiyingaole area,Inner Mongolia and its implications.Journal of Jilin University (Earth Science Edition),37(1): 15-23 (in Chinese with English abstract)

Cao HH,Xu WL,Pei FP,Wang ZW,Wang F and Wang ZJ.2013.Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block.Lithos,170-171: 191-207

Chen B,Jahn BM,Wilde SA and Xu B.2000.Two contrasting Paleozoic magmatic belts in northern Inner Mongolia China: Petrogenesis and tectonic implications.Tectonophysics,328(1-2): 157-182

Chen B,Jahn BM and Tian W.2009.Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages,Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments.Journal of Asian Earth Sciences,34(3): 245-257

Chen B,Ma XH,Liu AK and Muhetaer ZR.2009.Zircon U-Pb ages of the Xilinhot metamorphic complex and blueschist and implications for tectonic evolution of the Solonker suture.Acta Petrologica Sinica,25(12): 3123-3129 (in Chinese with English abstract)

Chen C,Zhang ZC,Guo ZJ,Li JF,Feng ZS and Tang WH.2012.Geochronology,geochemistry,and its geological significance of the Permian Mandula mafic rocks in Damaoqi,Inner Mongolia.Science China (Earth Sciences),55: 39-52

Chu H,Zhang JR,Wei CJ,Wang HC and Ren YW.2013.A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group,Inner Mongolia.Chinese Science Bulletin,58(28-29): 3580-3587

Cox KG,Bell JD and Pankhurst RJ.1979.The Interpretation of Igneous Rocks.London: Allen and Unwin,1-450

De Jong K,Xiao WJ,Windley BF,Masago H and Lo CH.2006.Ordovician40Ar/39Ar phengite ages from the blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) and implications for the Early Paleozoic history of continental blocks in China and adjacent areas.American Journal of Science,306(10): 799-845

Glassley W.1974.Geochemistry and tectonics of the Crescent Volcanic rocks,Olympia Peninsula,Washington.Geological Society of America Bulletin,85(5): 785-794

Hong DW,Huang HZ,Xiao YJ,Xu HM and Jin MY.1994.The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance.Acta Geologica Sinica,68(3): 219-230 (in Chinese with English abstract)

Jian P,Liu DY,Kröner A,Windley BF,Shi Y,Zhang F,Shi G,Miao L,Zhang W,Zhang Q,Zhang L and Ren J.2008.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt,Inner Mongolia of China: Implications for continental growth.Lithos,101(3-4): 233-259

Jian P,Liu DY,Kröner A,Windley BF,Shi YR,Zhang W,Zhang FQ,Miao LC,Zhang LQ and Tomurhuu D.2010.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic Belt,China and Mongolia.Lithos,118(1-2): 169-190

Kröner A,Windley BF and Badarch G.2007.Accretionary growth and crust-formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield.Geological Society of America Memoir,200: 181-209

Li CD,Ran H,Zhao LG,Wang HC,Zhang K,Xu YW,Gu CY and Zhang YQ.2012.LA-ICP MS U-Pb geochronology of zircons from the Wenduermiao Group and its tectonic significance.Acta Petrologica Sinica,28(11): 3705-3714 (in Chinese with English abstract)

Li JY.2006.Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences,26(3-4): 207-224

Li YL,Zhou HW,Zhong ZQ,Zhang XH,Liao QA and Ge MC.2009.Collision processes of North China and Siberian plates: Evidence from LA-ICP-MS zircon U-Pb age on deformed granite in Xar Moron Suture Zone.Earth Science,34(6): 1-8 (in Chinese with English abstract)

Liu JF,Chi XG,Zhang XZ,Ma ZH,Zhao Z,Wang TF,Hu ZC and Zhao XY.2009.Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area,Inner Mongolia and its tectonic Significance.Acta Geologica Sinica,83(3): 365-375 (in Chinese with English abstract)

Meng E,Xu WL,Pei FP,Yang DB,Wang F and Zhang XZ.2011.Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province,NE China: Zircon U-Pb-Hf isotopes and geochemical evidence.Journal of Asian Earth Sciences,41(2): 119-132

Miao LC,Fan WM,Liu DY,Zhang FQ,Shi YR and Guo F.2008.Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt,China.Journal of Asian Earth Science,32(5-6): 348-370

Miyashiro A.1974.Volcanic rock series in island arcs and active continental margins.American Journal of Science,274(4): 321-355

Pearce JA and Cann JR.1973.Tectonic setting of basic volcanic rocks determined using trace element analysis.Earth and Planetary Science Letters,19(2): 290-300

Pearce JA.2008.Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust.Lithos,100(1-4): 14-48

Sengör AMC,Natal’in BA and Burtman VS.1993.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364(6435): 299-307

Shao JA.1991.Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate.Beijing: Peking University Press,1-135 (in Chinese)

Shi GH,Miao LC,Zhang FQ,Jian P,Fan WM and Liu DY.2004.The age and its regional tectonic implication of the Xilinhot A-type granites,Inner Mongolia.Chinese Science Bulletin,49(4): 384-389 (in Chinese)

Shi YR,Liu DY,Zhang Q,Jian P,Zhang FL,Miao LC and Zhang LQ.2007.SHRIMP U-Pb zircon dating of Triassic A-type granites in SonidZuoqi,central Inner Mongolia,China and its tectonic implications.Geological Bulletin of China,26(2): 183-189 (in Chinese with English abstract)

Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process.In: Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1): 313-345

Tang J,Xu WL,Wang F,Wang W,Xu MJ and Zhang YH.2013.Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif,NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent.Precambrian Research,224: 597-611

Tang KD,Yan ZJ,Zhang RP,Xu DK,Tchi Y,Su YZ and Liang ZF.1983.On Wentermiao Group and its tectonic significance.In: Tang KD (ed.).Contributions for Project of Plate Tectonic Northern China (1).Shenyang: Liaoning Science and Technology Publishing House,186-208 (in Chinese)

Tang KD.1990.Tectonic development of Paleozoic fold belts at the northern margin of the northern margin of the Sino-Korean craton.Tectonics,9(2): 249-260

Tang KD.1992.Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate.Beijing: Peking University Press,277-278 (in Chinese)

Wang CW,Sun YW,Li N,Zhao GW and Ma XQ.2009.Tectonic implications of Late Paleozoic stratigraphic distribution in Northeast China and adjacent region.Science in China (Series D),52(5): 619-626

Wei CJ and Cui Y.2011.Metamorphic evolution during subduction and exhumation of crust: Evidence from phase equilibria modelling for high- and ultrahigh-pressure eclogites.Acta Petrologica Sinica,27(4): 1067-1074(in Chinese with English abstract)

Winchester JA and Floyd PA.1976.Geochemical magma type discrimination: Application to altered and metamorphosed igneous rocks.Earth and Planetary Science Letters,28(3): 326-336

Wood DA.1980.The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province.Earth and Planetary Science Letters,50(2): 77-97

Xiao WJ,Windley BF,Hao J and Zhai MG.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China: Termination of the central Asian orogenic belt.Tectonics,22(6): 1069-1088

Xiao WJ,Windley BF,Huang BC,Han CM,Yuan C,Chen HL,Sun M,Sun S and Li JL.2009.End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution,Phanerozoic continental growth and metallogeny of Central Asia.International Journal of Earth Science,98(6): 1189-1287

Xu B,Charvet J and Zhang FQ.2001.Primary study on petrology and geochronology of the blueschist in Sunidzuoqi,northern Inner Mongolia.Chinese Journal of Geology,36(4): 424-434 (in Chinese with English abstract)

Xu B,Charvet J,Chen Y,Zhao P and Shi GZ.2013.Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework,kinematics,geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt.Gondwana Research,23(4): 1342-1364

Xue HM,Guo LJ,Hou ZQ,Zhou XW,Tong Y and Pan XF.2009.The Xilingele complex from eastern part of the Central Asian-Mongolia Orogenic Belt,China: Products of Early Variscan Orogeny other than ancient block: Evidence from zircon SHRIMP U-Pb ages.Acta Petrologica Sinica,25(8): 2001-2010 (in Chinese with English abstract)

Zhang XH,Zhang HF,Tang YJ,Wilde SA and Hu ZC.2008.Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia,North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt.Chemical Geology,249(3-4): 262-281

Zheng YF.2012.Metamorphic chemical geodynamics in continental subduction zones.Chemical Geology,328: 5-48

Zhu YF,Sun SH,Gu LB,Ogasawara Y,Jiang N and Honma H.2001.Permian volcanism in the Mongolian orogenic zone,Northeast China: Geochemistry,magma sources and petrogenesis.Geological Magazine,138(2): 101-115

附中文参考文献

鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生.2007.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版),37(1): 15-23

陈斌,马星华,刘安坤,木合塔尔·扎日.2009.锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索伦缝合带演化的意义.岩石学报,25(12): 3123-3129

晨辰,张志诚,郭召杰,李建锋,冯志硕,汤文豪.2012.内蒙古达茂旗满都拉地区早二叠世基性岩的年代学、地球化学及其地质意义.中国科学(地球科学),42(3): 343-358

洪大卫,黄怀曾,肖宜君,徐海明,靳满元.1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,68(3): 219-230

李承东,冉皞,赵利刚,王惠初,张阔,许雅雯,谷永昌,张永清.2012.温都尔庙群锆石的LA-ICPMS U-Pb年龄及构造意义.岩石学报,28(11): 3705-3714

李益龙,周汉文,钟增球,张雄华,廖群安,葛梦春.2009.华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石的LA-ICP-MS年龄证据.地球科学,34(6): 1-8

刘建峰,迟效国,张兴洲,马志红,赵芝,王铁夫,胡兆初,赵秀羽.2009.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义.地质学报,83(3): 365-376

邵济安.1991.中朝板块北缘中段地壳演化.北京: 北京大学出版社,1-135

施光海,苗来成,张福勤,简平,范蔚茗,刘敦一.2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,49(4): 384-389

石玉若,刘敦一,张旗,简平,张福勤,苗来成,张履桥.2007.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义.地质通报,26(2): 183-189

唐克东.1983.论温都尔庙群及其构造意义.见:唐克东主编.中国北方板块构造文集1.沈阳:辽宁科技出版社,186-208

唐克东.1992.中朝板块北侧褶皱带构造演化及其成矿规律.北京: 北京大学出版社,277-278

王成文,孙跃武,李宁,赵国伟,马小琴.2009.中国东北及邻区晚古生代地层分布规律的大地构造意义.中国科学(D辑),39(10): 1429-1437

魏春景,崔莹.2011.地壳俯冲与折返过程的变质作用演化: 来自高压-超高压榴辉岩相平衡模拟的证据.岩石学报,27(4): 1067-1074

徐备,Charcet J,张福勤.2001.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究.地质科学,36(4): 424-434

薛怀民,郭利军,侯增谦,周喜文,童英,潘晓菲.2009.中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块?锆石SHRIMP U-Pb年代学证据.岩石学报,25(8): 2001-2010

猜你喜欢
基性岩图解玄武岩
玄武岩纤维微表处在高速公路预养护中的应用
玄武岩纤维可用于海水淡化领域
江西省大余县白井钨矿基性岩脉与钨成矿关系探讨
火山作用对板块构造环境的判别方法
2019年全球连续玄武岩纤维市场产值将达1.047亿美元
图解十八届六中全会
吉林省通化县四棚甸子地区铜镍成矿条件浅析
西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义
图解天下
新疆北部二叠纪基性岩墙群岩浆作用及其动力学背景