王炎阳 徐备 程胜东 廖闻 邵军 汪岩
1.北京大学造山带与地壳演化教育部重点实验室,北京大学地球与空间科学学院,北京 1008712.沈阳地质矿产研究所,沈阳 1100341.
中亚造山带是全球显生宙陆壳增生与改造最强烈的地区之一,其形成与古亚洲洋的演化密切相关(Sengöretal.,1993; Tang,1990)。中亚造山带的东段习称兴蒙造山带,作为华北板块与其北部陆块碰撞拼合的产物,兴蒙造山带的研究对于了解古亚洲洋的闭合及中亚造山带的演化历史具有重要意义。然而兴蒙造山带的位置、时代与形成过程一直未有定论。例如,有学者提出索伦科尔-西拉木伦(Solonker-Xar Moron)缝合带代表古亚洲洋晚古生代最后闭合的位置(任纪舜等,1980; 李春昱等,1982; 李锦轶等,1986,2007; Xiaoetal.,2003; Li,2006);也有学者认为存在更大范围的早古生代造山带(何国琦和邵济安,1983;Tang,1990;邵济安,1991),可称为“双冲造山带”,由南造山带和北造山带组成(Xu and Chen,1993,1997; Xuetal.,2013)。关于古亚洲洋闭合的时代也有较大争议,一种观点认为晚古生代古亚洲洋进入闭合阶段,发育与俯冲-碰撞有关的构造格局(Xiaoetal.,2003,2009; Li,2006; Jianetal.,2010);另一种观点则认为古亚洲洋在早-中古生代已经闭合,晚古生代处于伸展环境,发育与陆内裂谷有关的岩石建造(邵济安,1991; 唐克东,1992; 洪大卫等,1994;Hongetal.,1996)。
内蒙古赤峰市克什克腾旗-林西地区是涉及上述争议的关键地区之一。克什克腾旗五道石门水库出露一套由灰绿色玄武岩、枕状玄武岩和硅质粉砂岩组成的火山-沉积岩系,前人研究认为它们属于蛇绿岩。何国琦和邵济安(1983)根据五道石门枕状细碧岩中夹有硅质岩夹层和透镜体并有属于早古生代的微体化石,将五道石门、黄岗梁、杏树洼等地的基性、超基性岩等初步认定为早古生代蛇绿岩建造。李锦轶(1986,1987)根据矿物学及岩石地球化学特征,认为五道石门地区的枕状基性熔岩可能是来源于上地幔的玄武质岩浆,并在早古生代洋盆扩张中心喷发,构成了古洋壳蛇绿岩套的一部分,并可能于志留纪末构造侵位于华北板块的北缘。而王玉净和樊志勇(1997)则根据杏树洼蛇绿岩中发现的放射虫化石认为上述蛇绿岩属中二叠世中晚期。然而目前缺乏对五道石门基性火山岩的同位素定年数据。本文对五道石门水库的基性火山岩进行了LA-ICP-MS锆石U-Pb年龄测定,并结合前人资料分析其构造环境。
研究区位于内蒙古克什克腾旗西北部、浑善达克沙地以东,处于北造山带(苏尼特左旗-锡林浩特)和南造山带(温都尔庙南-吉中地区)之间。出露的地层为下元古界宝音图群、上石炭统本巴图组、二叠系和中生代侏罗系、白垩系火山碎屑岩及火山熔岩(图1a)。五道石门水库一带(图1b)主要出露上古生界二叠系和中生代侏罗系、白垩系陆相火山碎屑岩及火山熔岩,其中二叠系地层由老到新依次为大石寨组、哲斯组和林西组(内蒙古自治区地质矿产局,1991)。
大石寨组为浅海-滨海相碎屑岩、细碧岩、角斑岩及凝灰岩组合,厚度大于2680m。其底部为一套滨海相砂、页岩组合,下限不清。哲斯组原称西乌珠穆沁旗组或黄岗梁组,从五道石门到黄岗梁林场一带大面积出露,下部主要是黄绿色砂砾岩、粉砂岩、砾岩、灰色生物碎屑岩和硅质岩;上部为灰绿色、灰黑色块状炭质粉砂岩、板岩,夹灰岩透镜体,总厚约2238m;其上与林西组为连续沉积,其下与大石寨组为角度不整合接触关系。林西组主要分布于五道石门水库西北侧和黄岗梁林场南侧,岩性比较单一,主要由一套黑色页岩、粉砂岩、砂岩组成,上限不清,下部与下哲斯组似为整合接触,出露厚度约为2699m(内蒙古自治区地质矿产局,1991)。
本文研究的火山岩分布于五道石门水库沿岸。由南往北依次为玄武岩、枕状玄武岩、玄武岩及硅质粉砂岩,剖面层序(图2)如下:
4)灰白色硅质粉砂岩(图3a),连续薄层状产出,镜下观察其由细小碎屑构成水平层理,成分主要为粉砂级的石英,少数可达0.1mm;此外还含有较多细小的云母碎片(图3d)。出露在水库大坝北岸陡坡上,偶见硅质粉砂岩与黑绿色玄武岩呈互层状产出,互层厚度3~10cm。粉砂岩表现出明显的韵律性层理,厚约15m。
3)厚层状灰绿色玄武岩,见于水库大坝北岸陡坡,破碎强烈,厚约90m。
2)灰绿色枕状构造玄武岩,见于水库大坝南岸(图3b)。
图1研究区地质简图(a,据Miaoetal.,2007,有修改;b据内蒙古自治区地质调查院,1968*内蒙古自治区地质调查院.1968.1:20万刘家营子图幅区域地质调查报告)
Fig.1Sketch geological map of study area (a,after Miaoetal.,2007)
图2 五道石门大坝地质剖面Fig.2 Cross-section of Wudaoshimen Dam
枕体呈上凸下平或略凹的不规则椭球状,其底面总体倾向北东方向。枕体长轴0.4~1.0m不等,边部具有冷凝边,内部气孔和杏仁状构造较发育,杏仁体多由绿泥石、方解石和硅质组成,厚约20m。镜下观察其矿物组成主要为斜长石和少量辉石(图3e),间粒结构;斜长石呈自形-半自形细板条状,辉石呈他形细粒状充填于斜长石空隙中。
1)厚层状灰绿色玄武岩夹少量透镜状红色硅质岩,见于水库大坝南岸,破碎强烈,未见底。红色硅质岩呈不连续的透镜状,质地坚硬,分布稀疏(图3c);镜下观察其主要由细小鳞片状石英组成(图3f)。
样品WD1019-01为采自水库大坝南岸的灰绿色枕状玄武岩,采样点GPS坐标:43°35′27″N,117°15′58″E。岩枕大小约0.4×0.3×0.3m。样品采用常规方法进行破碎,经浮选和磁选后,再在双目镜下挑选出晶型和透明度较好的锆石颗粒制成样品靶,锆石样品靶的制备与SHRIMP定年锆石样品制备方法基本相同(宋彪等,2002)。锆石的阴极发光(CL)显微照相在北京大学造山带与地壳演化教育部重点实验室完成。
图3 五道石门玄武岩及围岩的野外及镜下照片(a)-粉砂岩;(b)-枕状熔岩;(c)-玄武岩中的红色硅质岩透镜体;(d)-硅质粉砂岩的显微结构;(e)-枕状熔岩的显微结构;(f)-红色硅质岩的显微结构.(d-f)为正交偏光下Fig.3 The field and microscopic photographs of Wudaoshimen basalts and wall rocks(a)-siltstone; (b)-pillow lava; (c)-red siliceous rock lenses in basalts; (d)-microstructure of siliceous siltstone; (e)-microstructure of pillow lava; (f)-microstructure of red siliceous rock.(d-f) under perpendicular polarized light
图4 枕状熔岩部分锆石CL图像Fig.4 CL images of selected zircons from Wudaoshimen pillow lava
锆石LA-ICP-MS原位U-Pb同位素年龄分析在北京大学造山带与地壳演化教育部重点实验室完成。测试仪器为电感耦合等离子体质谱仪(Agilent 7500c)和准分子激光剥蚀系统(COMPExPro102)联机,激光器为ArF准分子激光器。激光剥蚀束斑直径为32μm,激光能量密度为10J/cm2,剥蚀频率为5Hz。实验中采用He作为剥蚀物质的载气,Ar为辅助气。锆石年龄计算采用标准锆石Plesovice(337Ma)作为外标(Slámaetal.,2008),标准锆石91500为监控盲样。元素含量采用国际标样NIST610作为外标,为内标元素进行校正。剥蚀样品前先进行15次激光脉冲的预剥蚀,采集20s的空白,随后进行60s的样品剥蚀,剥蚀完成后进行2分钟的样品池冲洗。采样方式为单点剥蚀,每完成5个测点的样品测定,加测标样一次。在15个锆石样品点前、后各测2次NIST610。样品的同位素比值和元素含量数据处理采用GLITTER4.4.2程序计算,普通铅校正使用Anderson(2002)给出的程序计算,加权平均年龄及谐和图的绘制使用Isoplot/Ex(3.0)(Ludwig,2003)完成。分析数据及锆石U-Pb谐和图给出误差为2σ,95%的置信度。
对五道石门枕状玄武岩(WD1019-01)的32颗锆石选取了32个点进行了测定,其测试结果见表1,锆石阴极发光(CL)图像见图4。根据其年龄分布范围(除1个测试点偏离谐和线未参加计算外)并结合CL图像特征,测试结果可分为四组(图5):261~290Ma(A组,15颗)、301~345Ma(B组,5颗)、446~572Ma(C组,6颗)和763~948Ma(D组,5颗)。A组锆石晶体形态好,自形长柱状,长宽比约2:1~3:1,Th/U值介于0.22~0.98;具有较宽的振荡环带,表现为基性岩浆锆石的特征。其测试结果基本集中于谐和线上并构成一个点群,15个点给出的谐和年龄为277±3Ma(图5)。B组锆石晶体形态好,柱状,Th/U值为0.34~0.40,环带比较细密,属于岩浆锆石,测试年龄从301±4Ma到345±6Ma。C组锆石自形-半自形,短柱状或粒状,环带较细密或无环带,Th/U值介于0.16~0.99。D组锆石自形-半自形,短柱状或粒状,环带清晰细密,Th/U值较高,为1.12~1.55,测试年龄从763±10Ma到948±11Ma。
本文测试的五道石门枕状玄武岩样品(WD1019-01)的锆石U-Pb测年结果可分为四组:261~290Ma(A组,15颗)、301~345Ma(B组,5颗)、446~572Ma(C组,6颗)和763~948Ma(D组,5颗)。其中,A组15个测试点给出的谐和年龄为277±3Ma(MSWD=0.02)。鉴于该组锆石振荡环带符合基性岩浆锆石的特征,我们认为它代表岩石的形成年龄,表明五道石门枕状玄武岩形成于早二叠世晚期,应属大石寨组。
其余三组锆石测试结果分散,锆石多呈自形-半自形,粒状或短柱状,振荡环带较窄,且没有270~280Ma的生长边,表明它们应该是基性岩浆上升过程中从围岩捕获的锆石。因此这三组锆石测试结果应代表围岩通道的年龄信息。B组锆石年龄介于301±4Ma到345±6Ma之间,这与本区周边众多310~330Ma的岩浆事件相一致,反映了本区及周边早石炭世-晚石炭世初大规模岩浆侵位事件。例如鲍庆中等(2007)对锡林浩特杂岩体中的石英闪长岩进行SHRIMP锆石U-Pb年代学测定,所得年龄为313±5Ma~323±4Ma;施光海等(2003)报道该杂岩体中的石榴石花岗岩SHRIMP年龄为316±3Ma;而片麻状二长花岗岩和花岗闪长岩SHRIMP年龄分别为316.5±1.8Ma和324.4±2.4Ma,并普遍具有年龄为320Ma左右的锆石增生边(葛梦春等,2011);刘建峰(2009)报道林西-东乌旗一带本巴图组火山岩和花岗岩的锆石U-Pb年龄分别为315.4±4.4Ma~323.9±3.5Ma和316.7±2.1Ma~323±5Ma。
表1五道石门枕状熔岩锆石U-Pb测年结果
Table 1Results of LA-ICP-MS zircon U-Pb age dating for the pillow lava from Wudaoshimen
测点号Th(×10-6)U(×10-6)Th/U同位素比值同位素年龄(Ma)207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U比值2σ比值2σ比值2σ年龄2σ年龄2σ年龄2σWD101901⁃01801050 750 056520 003760 571090 037490 073310 00125473115459244568WD101901⁃021591930 820 067250 002191 296390 041690 139860 00188846448441884411WD101901⁃03761610 470 051690 004510 306610 026360 043030 00087272158272202725WD101901⁃041516890 220 065980 001331 224010 024520 134590 0015980623812118149WD101901⁃051261350 930 064830 002281 122970 038960 125680 00178769497641976310WD101901⁃063603670 980 051750 002300 320860 013950 044990 0007027471283112844WD101901⁃072466160 400 052050 002510 313990 014820 043770 0007028879277112764WD101901⁃085968650 690 046840 003820 272440 021930 042180 0005541182245172663WD101901⁃091642510 660 053020 013730 367790 095100 050330 00100330449318713176WD101901⁃101642910 560 051570 004670 311190 027690 043780 00097266161275212766WD101901⁃1138810140 380 068040 001351 371030 026990 146190 00172870228771288010WD101901⁃1247970 490 052040 008280 310430 048970 043280 00110287296275382737WD101901⁃133093530 870 051450 002240 302620 012940 042680 0006226171268102694WD101901⁃142583340 770 052030 002260 315470 013460 043990 0006328771278102784WD101901⁃151211300 930 057410 003230 645390 035860 081570 0013050794506225058WD101901⁃163325350 620 051650 002020 317070 012120 044540 000642706128092814WD101901⁃172504560 550 051930 002580 319220 015480 044600 0007328281281122815WD101901⁃181426540 220 052220 001630 331050 010160 045990 000612954629082904WD101901⁃19401000 400 056170 004140 559720 040600 072310 00140459127451264508WD101901⁃201051630 650 052860 004640 401020 034930 055040 00095323166342253456WD101901⁃213255050 640 051240 004500 292060 025550 041350 00058252172260202614WD101901⁃22311940 160 055810 002490 550500 024100 071560 0011044570445164467WD101901⁃23586960 080 053340 002520 402050 018580 054690 0008934375343133435WD101901⁃241321770 750 059040 002260 754600 028340 092730 0013956956571165728WD101901⁃251081880 580 052130 004880 322600 029950 044900 00079291178284232835WD101901⁃26773110 250 070840 001601 546990 034710 158440 00198953269491494811WD101901⁃272113510 600 051990 002480 317980 014950 044380 0006428581280122804WD101901⁃281041280 810 052110 004460 344950 029130 048030 00093290156301223026WD101901⁃293876000 650 052350 002100 344730 013630 047780 0006530165301103014WD101901⁃302593460 750 051680 002450 307700 014250 043200 0006927177272112734WD101901⁃313373400 990 057400 001760 644260 019400 081430 0011150742505125057WD101901⁃32902820 320 051880 008440 317130 051380 044360 00086280310280402805
图5 五道石门枕状熔岩锆石U-Pb谐和图Fig.5 Concordia diagram showing LA-ICP-MS zircon U-Pb dating for the pillow lava from Wudaoshimen
C组锆石具有446~572Ma的年龄,与之可对比的是,在研究区以北的锡林浩特地区,葛梦春等(2011)报道了存在早古生代岩浆弧,而锡林郭勒杂岩中也含有大量早古生代的碎屑锆石(施光海等,2003)。与此同时,在研究区东北方向的松辽地块也具有518Ma的碎屑锆石年龄峰值(Zhouetal.,2012)。因此五道石门基性岩中早古生代捕获锆石的出现,表明其围岩(基底)可能具有和邻区相似的岩石建造。
D组锆石的年龄分布于760Ma到950Ma之间研究表明,这也是华北板块北部兴蒙造山带的重要特征(Hanetal.,2011; Rojas-Agramonteetal.,2011)。例如松辽地块的基底年龄为750~920Ma(权京玉等,2013)。Xuetal.(2013)曾推测研究区西部浑善达克沙地(图1)存在着一个未出露的浑善达克地块,其基底年龄范围为576~1044Ma。因此,D组锆石的年龄表明五道石门枕状玄武岩的围岩具有相似的基底信息,说明部分源区物质可能是记录了Rodinia超大陆聚合与裂解时期的岩浆活动的新元古代基底。
何国琦和邵济安(1983)考察了西拉木伦河一带(五道石门、黄岗梁、杏树洼等)出露的基性火山岩,认为五道石门地区的玄武岩和枕状玄武岩为细碧岩。对采自五道石门-黄岗梁地区的九个岩样的化学分析结果表明含量较高,含量较低;同时добечов图解表明它们具有大洋拉斑玄武岩的特征,属于残余洋壳。李锦轶(1986)根据该区枕状玄武岩的矿物学及地球化学特征分析,认为五道石门地区的枕状玄武岩可能是源于上地幔的玄武质岩浆在早古生代洋盆扩张中心喷发形成,构成了古洋壳-蛇绿岩套的一部分。
笔者根据五道石门枕状玄武岩定年结果,结合对层序和玄武岩中硅质岩数量和产状的观察,认为将其作为大洋蛇绿岩的观点值得商榷。首先,五道石门地区没有发现一套较为完整的蛇绿岩序列,即包含地幔橄榄岩、堆晶杂岩、席状基性岩墙和枕状熔岩以及深海相沉积物的三位一体建造(Coleman,1977; Dilek,2003; Dilek and Furnes,2011)。另外目前仅在枕状构造玄武岩中见少量红色硅质岩透镜体(图3),与大洋深海蛇绿岩中厚层状红色硅质岩相比有很大差别,例如北祁连山清水沟和百经寺变质硅质岩最大厚度可达50m,绵延1~2km(Songetal.,2007)。且透镜体产出于玄武岩层内的成因尚不明确,而玄武岩层之上为灰白色硅质粉砂岩,并无红色硅质岩。另一方面,枕状玄武岩的出现仅能指示玄武岩浆在水下喷发,并不一定代表大洋环境。而前述玄武岩样品中三组捕获锆石的年龄结果显示源区(地壳基底)含有301~345Ma、446~572Ma和763~948Ma的年龄信息,表明五道石门玄武岩可能发育在具有晚元古-早古生代基底的陆壳内,暗示早二叠世晚期本区可能处于板内拉张环境。
(1)五道石门地区出露的火山-沉积岩系应属于大石寨组,下部为灰绿色块状玄武岩和枕状玄武岩,镜下观察其矿物组成主要为细长条状斜长石和少量辉石,间粒结构;上部发育灰白色硅质粉砂岩。
(2)五道石门枕状玄武岩样品锆石U-Pb定年结果大致可分为四组:最年轻组锆石的谐和年龄为277±3Ma(n=15,MSWD=0.02),结合锆石CL特征,应代表岩石的形成年龄,表明其形成于早二叠世晚期,应属大石寨组;其余三组锆石年龄较分散,分别为301~345Ma、446~572Ma和760~950Ma,代表了基性岩浆上升过程中从围岩捕获的老锆石信息,表明五道石门玄武岩可能发育在具有晚元古-早古生代基底的陆壳之下。
(3)五道石门枕状玄武岩应是早二叠世晚期基性岩浆活动的产物,可能发育于具有新元古-古生代基底的陆壳之下,暗示早二叠世晚期本区处于板内拉张环境,并不存在大洋。
致谢感谢北京大学造山带与地壳演化教育部重点实验室马芳高级工程师在样品测试和数据处理方面给予的帮助、宋述光教授在薄片鉴定和锆石CL图鉴别方面给予的指导。
Anderson T.2002.Correction of common lead in U-Pb analyses that do not report204Pb.Chemical Geology,192(1-2): 59-79
Bao QZ,Zhang CJ,Wu ZL,Wang H,Li W,Sang JH and Liu YS.2007.SHRIMP U-Pb zircon geochronology of a Carboniferous quartz-diorite in Baiyingaole area,Inner Mongolia and its implications.Journal of Jilin University (Earth Science Edition),37(1): 15-23 (in Chinese with English abstract)
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region.1991.Regional Geology of Inner Mongolia Autonomous Region.Beijing: Geological Publishing House,189-219 (in Chinese)
Coleman RG.1977.Ophiolites: Ancient Oceanic Lithosphere? Michigan: Springer-Verlag
Dilek Y.2003.Ophiolite concept and its evolution.In: Dilek Y and Newcomb S (eds.).Ophiolite Concept and the Evolution of Geological Thought.America,Geological Society of America Special Paper,373: 1-16
Dilek Y and Furnes H.2011.Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere.Geological Society of America Bulletin,123(3-4): 387-411
Ge MC,Zhou WX,Yu Y,Sun JJ,Bao JQ and Wang SH.2011.Dissolution and supracrustal rocks dating of Xilin Gol Complex,Inner Mongolia,China.Earth Science Frontiers,18(5): 182-195(in Chinese with English abstract)
Han BF,He GQ,Wang XC and Guo ZJ.2011.Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen,Central Asia,and implications for the North Xinjiang,western China.Earth-Science Reviews,109(3): 74-93
He GQ and Shao JA.1983.Determination of Early Paleozoic ophiolites in southeastern Nei Mongol and their geotectonic significance.In: Tang KD (ed.).Contributions for the Project of Plate Tectonics in Northern China,No.1.Beijing: Geological Publishing House,243-250 (in Chinese)
Hong DW,Huang HZ,Xiao YJ,Xu MH and Jin MY.1994.Permian alkaline granites in central Inner Mongolia and their geodynamic significance.Acta Geologica Sinica,68(3): 219-230 (in Chinese)
Hong DW,Wang SG,Han BF and Jin MY.1996.Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere.Journal of Southeast Asian Earth Sciences,13(1): 13-27
Jian P,Liu DY and Kröner Aetal.2010.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic Belt,China and Mongolia.Lithos,118(1-2): 169-190
Li CY,Wang Q,Liu XY and Tang YQ.1982.Tectonic Map of Asia (scale 1:8000000).Beijing: Cartographic Publishing House (in Chinese)
Li JY.1986.The principal characteristics of pillow lava in Linxi district and its geotectonic significance.Bulletin of Shenyang Institute of Geology and Mineral Resource,CAGS,14: 65-74 (in Chinese with English abstract)
Li JY.1987.Essential characteristics of Early Paleozoic ophiolites to North of Xar Moron River,eastern Nei Mongol and their plate tectonic significance.In: Shenyang Institute of Geology and Mineral Resource (ed.).Contributions to the Project of Plate Tectonics in Northern China,No.2.Geological Publishing House,136-150 (in Chinese)
Li JY.2006.Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences,26(3-4): 207-224
Li JY,Gao LM,Sun GH,Li YP and Wang YB.2007.Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates.Acta Petrologica Sinica,23(3): 565-582 (in Chinese with English Abstract)
Liu JF.2009.Late Paleozoic magmatism and its constraints on regional tectonic evolution in Linxi-Dongwuqi area,Inner Mongolia.Ph.D.Dissertation.Changchun: Jilin University (in Chinese)
Ludwig,KR.2003.Isoplot/Ex,A Geochronological toolkit for Microsoft Excel version 3.00.Berkeley: Berkeley Geochronology Center,4: 1-70
Miao LC,Zhang FQ,Fan WM and Liu DY.2007.Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations.Geological Society of London,280(1): 223-237
Quan JY,Chi XG,Zhang L,Sun W,Fan LF and Hu ZC.2013.LA-ICP-MS U-Pb geochronology of detrital zircon from the Neoproterozoic Dongfengshan Group in Songnen massif and its geological significance.Geological Bulletin of China,32(2-3): 353-364 (in Chinese with English abstract)
Ren JS,Jiang CF,Zhang ZK and Qin DY.1980.The Geotectonic Evolution of China.Beijing: Science Press,89-104 (in Chinese)
Rojas-Agramonte Y,Kröner A,Demoux A,Xia X,Wang W,Donskaya T,Liu D and Sun M.2011.Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt.Gondwana Research,19(3): 751-763
Sengör,AMC,Natal’in BA and Burtman VS.1993.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364: 299-307
Shi GH,Liu DY,Zhang FQ,Jian P,Miao LC,Shi YR and Tao H.2003.SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex,Inner Mongolia,China.Chinese Science Bulletin,48(24): 2742-2748
Shao JA.1991.Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate.Beijing: Peking University Press,1-136 (in Chinese)
Sláma J,Kosler J,Condon DJ,Crowley JL,Gerdes A,Hanchar JM,Horstwood MSA,Morris GA,Nasdala L,Norberg N,Schaltegger U,Schoene B,Tubrettk MN and Whitehouse MJ.2008.Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis.Chemical Geology,249(1-2): 1-35
Song B,Zhang YH,Wan YS and Jian P.2002.Discussion on targets production,age dating,age determination and the related phenomenon of the zircon SHRIMP samples.Geological Review,48(Suppl.): 26-30 (in Chinese)
Song SG,Zhang LF,Niu Y,Wei CJ,Liou JG and Shu GM.2007.Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone,NW China: Implications for Early Paleozoic cold oceanic subduction and water transport into mantle.Journal of Metamorphic Geology,25(5): 547-563
Tang KD.1990.Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton.Tectonics,9(2): 249-260
Tang KD.1992.Tectonic Evolution and Metallogenic Regularity of the Fold Belt on the Northern Margin of Sino-Korea Platform.Beijing: Peking University Press,1-277 (in Chinese)
Wang YJ and Fan ZY.1997.Discovery of permian radiolarians in ophiolite belt on northern side of Xar Moron River,Inner Mongolia and its geological significance.Acta Paleontologica Sinica,36(1): 58-69 (in Chinese with English abstract)
Xiao WJ,Windley BF,Hao J and Zhai MG.2003.Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China: Termination of the central Asian orogenic belt.Tectonics,22(6): 1069-1089
Xiao WJ,Windley BF,Huang BC,Han CM,Yuan C,Chen HL,Sun M,Sun S and Li JL.2009.End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution,Phanerozoic continental growth,and metallogeny of Central Asia.Int.J.Earth Sci.,98(6): 1189-1217
Xu B and Chen B.1993.The opposite subduction and collision between the Siberian and Sino-Korean plates during the Early-Middle Paleozoic.Report No.4 of the IGCP Project 283: Geodynamic Evolution of Paleoasian Ocean,Novosibirsk,USSR,148-150
Xu B and Chen B.1997.Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia.Science in China (Series D),40(5): 463-469
Xu B,Charvet J,Chen Y,Zhao P and Shi GZ.2013.Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework,kinematics,geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt.Gondwana Research,23(4): 1342-1364
Zhou JB,Wilde SA,Zhang XZ,Liu FL and Liu JH.2012.Detrital zircons from phanerozoic rocks of the Songliao Block,NE China: Evidence and tectonic implications.Journal of Asian Earth Sciences,47: 21-34
附中文参考文献
鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生.2007.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版),37(1): 15-232
葛梦春,周文孝,于洋,孙俊俊,鲍建泉,王世海.2011.蒙古锡林郭勒杂岩解体及表壳岩系年代确定.地学前缘,18(5): 182-195
何国琦,邵济安.1983.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义.见: 唐克东主编.中国北方板块构造文集(1).北京: 地质出版社,243-250
洪大卫,黄怀曾,肖宜君,徐海明,靳满元.1994.内蒙中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,68(3): 219-230
李春昱,王荃,刘雪亚,汤耀庆.1982.亚洲大地构造图(1:8000000)及其说明书.北京: 中国地图出版社
李锦轶.1986.林西一带枕状基性熔岩的基本特征及其大地构造意义.中国地质科学院沈阳地质矿产研究所所刊,14: 65-74
李锦轶.1987.内蒙古东部西拉木伦河北侧早古生代蛇绿岩的基本特征及其构造意义.见: 沈阳地质矿产研究所主编.中国北方板块构造论文集 (2).北京: 地质出版社,136-150
李锦轶,高立明,孙桂华,李亚萍,王彦斌.2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝板块碰撞时限的约束.岩石学报,23(3): 565-582
刘建峰.2009.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约.博士学位论文.长春: 吉林大学
内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志.北京: 地质出版社,189-219
权京玉,迟效国,张蕊,孙巍,范乐夫,胡兆初.2013.松嫩地块东部新元古代东风山群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义.地质通报,32(2-3): 353-364
任纪舜,姜春发,张正坤,秦德余.1980.中国大地构造及演化——1:400万中国大地构造图简要说明.北京: 科学出版社,89-104
施光海,刘敦一,张福勤,简平,苗来成,石玉若,陶华.2003.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及其意义.科学通报,48(20): 2187-2192
邵济安.1991.中朝板块北缘中段的地壳演化.北京: 北京大学出版社,1-136
宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊): 26-30
唐克东.1992.中朝陆台北侧褶皱带构造演化和成矿规律.北京: 北京大学出版社,1-277
王玉净,樊志勇.1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报,36(1): 58-69