聂峰 石永红 王娟 康涛 曹晟
合肥工业大学资源与环境工程学院,合肥 230009
磁铁石榴角闪岩;等压降温;锆石U-Pb年龄;郯庐断裂
图1 研究区地质简图(a)-肥东地区(安徽段)地质图;(b)-地质剖面图Fig.1 Simplified geological sketch map of the study area(a)-geological sketch map of the Feidong area (Anhui segment); (b)-geological profile
长期以来,郯庐断裂的形成机制和演化过程一直是研究的热点,特别是该断裂与大别-苏鲁造山带在时空上、成因上的联系一直为人们所关注(Xuetal., 1987; Zhuetal., 2005, 2009, 2010)。目前,主流的观点认为郯庐断裂形成于大别-苏鲁造山带碰撞俯冲过程中(Zhangetal., 1984; Hsuetal., 1987; Watsonetal., 1987; Yin and Nie, 1993; Li, 1994; 万天丰和朱鸿, 1996; Chang, 1996; 王小凤等, 1998; Chung, 1999; Zhuetal., 2005, 2009, 2010)。另一种观点则强调郯庐断裂形成于该造山带折返之后(Xuetal., 1987; Okay and Sengor, 1992; Xu and Zhu, 1994; Wangetal., 2003; Mengetal., 2007)。近年来对郯庐断裂的研究多集中于年代学和构造地质学方面(Xuetal., 1980, 1987, 1994; Lin and Fuller, 1990; Okay and Sengor, 1992; Yin and Nie, 1993; Li, 1994; Linetal., 2005, 2009; Lin and Li, 1995; Zhang, 1997; Gilderetal., 1999; Schmidetal., 1999; Wangetal., 2003; Mengetal., 2007; Zhuetal., 2005, 2009, 2010; 朱光等, 1998, 2001, 2002, 2003, 2005a, b, 2006a, b, 2009a; 王勇生等, 2004, 2005a, b, 2006; 牛漫兰等, 2002, 2005, 2006; Zhang and Teyssier, 2013; Zhangetal., 2013; 赵田等, 2014),多关注其不同层次的变形特征和水平错断距离(Zhuetal., 2005, 2009, 2010)。而对于郯庐主干断裂(安徽段)空间上的展布状况仍缺乏统一的认识。Xuetal. (1987)、Zhangetal. (2007, 2013a, b)、Zhuetal. (2005, 2009, 2010) 认为郯庐主干断裂位于合肥盆地东缘,即解集-阚集-王铁-桥头集以东的张八岭隆起区。但是,赵田等(2014)则认为该主干断裂处于合肥盆地内部(图1)。关于该断裂带的横向展布,多数学者认为其沿着一个狭窄的线性条带分布,并仅限于扬子地块上。上述关于郯庐断裂带空间位置的不同认识,可能是由于对张八岭隆起区岩石单元构成缺乏深入的解剖所致,特别是相关精细的变质岩石学研究的不足,影响了人们对郯庐断裂带的全面深入理解。作为切穿了华北和扬子两大板块的郯庐断裂带,其展布范围可能不仅局限于扬子板块上,横向上的范围应当较为宽阔,从而部分进入华北板块内。若如此,在走滑断裂作用下,该带内可能有来自两侧板块的岩石。为此,本文对张八岭隆起区肥东群的特征性岩石——磁铁石榴角闪岩进行了详细变质岩石学、年代学研究。研究显示,该类岩石可能来源于华北板块,推测其可能因郯庐断裂的走滑作用被卷入该带内。
本次研究区域位于张八岭隆起区南段肥东地块最南缘。该地块西侧为合肥盆地,东侧为全椒盆地所覆盖(图1)。根据Zhuetal. (2005, 2009, 2010)和康涛等(2013)的研究,认为该地块自西向东可分为3个单元:(1)单元-I:主体为花岗片麻岩,沿浮渣山-火龙山-尖山-后分河一线分布,其间夹有斜长角闪岩和黑云斜长片麻岩透镜体;(2)单元-II:主要为黑云斜长片麻岩,分布于太子山一线;(3)单元-III:主要由角闪斜长片麻岩、含磷大理岩、斜长角闪岩、石榴黑云母片麻岩构成,沿龙山-方集-上份叶-蛮山口分布。该地块中发育有3条NNE向韧性剪切带,每条宽度在100~200m(图1a),均表现为左旋走滑运动特征(Zhuetal., 2005, 2009, 2010)。
重点研究的剖面位于单元-III东南缘,蛮山口北东,上份叶东南,坐标为:纬度31°46.148′和经度117°36.663′,剖面总长约200m。在该剖面上共采集23块样品,其中变形花岗岩5块,斜长角闪岩3块,石榴黑云片岩7块,磁铁石榴角闪岩8块,其中用于此次研究分析的共计4块(图1b),分别为QT026-1、QT023-1、TF003-1和TF001-2。研究剖面为NW-SE向,由西向东出露的岩性依次为变形花岗岩、斜长角闪岩、石榴黑云片岩、磁铁石榴角闪岩、石榴黑云片岩和斜长角闪岩(图1b、图2a)。这些岩石均以单斜层形式产出,面理倾向为134°~166°、倾角47°~65°。其中磁铁石榴角闪岩夹持于石榴黑云片岩之中,其出露的宽度约40~60m,斜长角闪岩和石榴黑云片岩宽度多在20~30m(图2a),这三类岩石紧密共生,沿走向延伸<300m,表现为构造透镜体形式。而变形花岗岩则沿走向稳定延伸,并与斜长角闪岩顺层接触,露头规模可见到微褶和长石拉长变形之特征(图2a)。
表1磁铁石榴角闪岩代表性矿物成分(wt%)
Table 1The representative mineral compositions (wt%) of magnet garnet amphibole
矿物包体基质1基质2GrtGruFe-HblGrtGruFe-HblGrtGruFe-HblSiO236.4747.9442.6436.4850.4841.2836.1750.3240.76TiO20.000.000.000.000.020.030.000.000.13Al2O319.920.4410.9320.251.1212.8020.010.9613.60FeO33.0237.8927.1733.6839.0828.1833.8139.4728.14Cr2O30.000.000.000.010.000.000.030.000.00MnO1.180.160.051.140.140.051.080.150.05MgO0.776.573.760.685.412.640.895.472.36CaO8.090.6211.457.251.2711.517.040.9911.78Na2O0.030.311.440.030.271.560.040.211.64K2O0.000.010.090.000.010.110.000.010.10Total99.4793.9497.5499.5397.7998.1699.0697.5798.55O12.0023.0023.0012.0023.0023.0012.0023.0023.00Si2.967.926.612.977.986.392.967.996.31Al1.910.092.001.940.212.341.930.182.48Fe3+0.160.000.540.120.000.560.160.000.45Ti0.000.000.000.000.000.000.000.000.02Cr0.000.000.000.000.000.000.000.000.00Fe2+2.085.232.992.175.173.092.155.243.20Mn0.080.020.010.080.020.010.080.020.01Mg0.091.620.870.081.280.610.111.300.54Ca0.710.111.900.630.221.910.620.171.96Na0.010.100.430.000.080.470.010.060.49K0.000.000.020.000.000.020.000.000.02Sum8.0015.0915.358.0014.9515.408.0014.9515.47
由于此次研究的重点是磁铁石榴角闪岩,故矿物化学分析主要是针对该类岩石进行。矿物成分测试由合肥工业大学资源与环境工程学院电子探针实验室完成,仪器型号为JEOL JAX-8230,实验条件为:加速电压15kv,电子束流20nA,电子束斑为3μm。其中石榴石和铁闪石、铁普通角闪石结构式分别以12和23个O进行计算,Fe2+的校正则分别以电价平衡法(Droop, 1987)、全Fe2+和Si+Al+Ti+Mg+Fe+Mn=13进行估算。代表性矿物分析结果见表1。此外,文中矿物缩写据 Whitney and Evans (2010):Grt=石榴石;Gru=铁闪石;Fe-Hbl=铁普通角闪石;Fe-Ts=铁契尔马克闪石;Qz=石英;Amp=角闪石;PL=斜长石;Kfs=钾长石;Bt=黑云母;Ms=白云母;Mag=磁铁矿;Chl=绿泥石;Ap=磷灰石。
图2 研究区岩石野外照片和显微照片(a)-主要岩性接触关系;(b)-变形花岗岩显微照片;(c)-斜长角闪岩显微照片;(d)-石榴黑云片岩显微照片;(e、f)-磁铁石榴角闪岩显微照片Fig.2 The field photos and microstructure photos in the study area(a)-contact relation of main lithology; (b)-microstructure photos of deformational granites; (c)-microstructure photos of Plagioclase amphibolite; (d)-microstructure photos of garnet biotite schist; (e, f)-microstructure photos of magnet garnet amphibole
(1)变形花岗岩(样品QT026-5):主要为钾长石(20%~25%)+斜长石(20%)+石英(30%)+黑云母(10%)+白云母(10%~15%)(图2b)。这些矿物因剪切变形作用,多表现为拉长变形之特征,粒径大小不一。其中钾长石粒径为0.2~0.5mm,斜长石粒径为0.2~0.5mm,石英粒径为0.2~0.5mm;黑云母则表现为他形-半自形,粒径约0.2~0.3mm。白云母则多为多硅白云母,Si4+多在3.08~3.12。
(2)斜长角闪岩(样品QT023-1):组成矿物为角闪石(50%~55%)+斜长石(20%~25%)+石英(10%~15%)+黑云母(10%~15%)+磷灰石(5%)(图2c)。角闪石呈自形-半自形,鳞片状定向排列,粒径0.2~2mm,颗粒边缘发生轻微绿泥石化;斜长石为半自形-他形结构,粒径为0.1~0.3mm;黑云母半自形-他形,粒径大小~0.2mm,部分颗粒已完全退变为绿泥石,仅保留黑云母结构假象;石英他形结构,粒径大小0.2~0.5mm;磷灰石他形结构,颗粒大小为0.1~0.3mm。
图3 磁铁石榴角闪岩的石榴石X-ray mapping图、角闪石BSE图及成分剖面图(a)-石榴石X-ray mapping图;(b)-石榴石成分剖面图;(c)-铁闪石BSE图;(d)-铁闪石成分剖面图;(e)-铁普通角闪石BSE图;(f)-铁普通角闪石成分剖面图Fig.3 X-ray mapping image of garnet, BSE images of amphibole and compositional profiles from magnet garnet amphibole(a)-X-ray mapping image of garnet; (b)-compositional profiles of garnet; (c)-BSE image of grunerite; (d)-compositional profiles of grunerite; (e)-BSE image of Fe-hornblende; (f)-compositional profiles of Fe-hornblende
(3)石榴黑云母片岩(样品TF003-1):矿物组成为石榴石(30%)+黑云母(40%)+石英(20%)+白云母(10%)+磁铁矿(5%)+磷灰石(3%)(图2d),石榴石呈自形-半自形,粒径1~3mm,内含大量石英、云母、磷灰石包体,包体主要分布于核部,边部无包体;黑云母为自形-半自形结构,粒径大小0.2~1mm。白云母为自形-半自形,粒径0.2~0.5mm,夹持于黑云母之间;石英呈他形,粒径0.2~3mm;磁铁矿呈自形,粒径0.2~0.3mm。
(4)磁铁石榴角闪岩(样品TF001-2):该类岩石是本次分析的重点岩石,其矿物组合为石榴石(10%~15%)+铁普通角闪石(20%~25%)+铁闪石(25%~30%)+磁铁矿(25%~30%)+石英(10%~15%)+磷灰石(1%~3%)(图2e, f)。石榴石呈半自形-他形,粒径约为0.5~5mm,内部包含铁闪石、铁普通角闪石、磁铁矿、石英包体(图2e, f),其多破裂,裂隙之中常常被绿泥石所充填;铁闪石以基质和包体两种形式存在,其中基质中的的铁闪石呈他形,粒径0.1~0.5mm;铁普通角闪同样以包体和基质两种形式存在,基质中的铁普通角闪石为他形,粒径0.1~1mm,其边缘或裂隙常常被绿泥石所替代;石英为他形,粒径0.1~2mm;磁铁矿呈自形-他形,粒径0.1~3mm;磷灰石为他形,粒径0.1~0.2mm。
图4 矿物成分图(a)-石榴石成分三角图;(b)-铁闪石成分图;(c)-铁普通角闪石成分图Fig.4 Compositional diagrams of the metamorphic minerals(a)-compositional triangle of garnet; (b)-compositional diagrams of grunerite; (c)-compositional diagrams of Fe-hornblende
为了较为精确地揭示该类岩石中主要矿物成分变化特征,以及准确评价其P-T演化过程,本次研究对其中的石榴石、角闪石进行了细致的成分剖面研究。研究显示:
(1)石榴石:在X-ray Mapping 图中(图3a),其无明显的环带特征,颜色较为均匀。但在成分剖面中(图3b),石榴石显示了轻微的核、边结构。自核部至边部,铁铝榴石组分逐渐增高(64%核→73%边),镁铝榴石组分轻微增高(3%核→5%边),钙铝榴石组分则略微降低(15%核→11%边),锰铝榴石组分较为平坦。同样地,在成分三角图中(图4a),核、边成分也略显差异,其中铁铝榴石组分逐渐增高,镁铝榴石组分和钙铝榴石组分相对较低。但就总体而言,石榴石成分变化似乎并不显著,这意味着其可能处于快速生长条件下,并已达到均一化程度。
(2)角闪石:该类岩石具有铁闪石和铁普通角闪石两种闪石,且两者都以包体和基质形式存在(图2e)。对基质中的铁闪石和铁普通角闪石的定量分析显示,无论是在矿物颜色方面,还是矿物成分方面,这两个闪石均较为均匀,没有明显的环带特征(图3c-f)。其中铁闪石中的Fe2+、Mg2+和Al3+成分十分平坦,没有早期或后期变质作用的叠加。稍有不同的是铁普通角闪石Al3+自核部至边部轻微降低(2.5核部→2.0边部)。参照Hammarstrometal. (1986)、Hollisteretal. (1987)、Johnsonetal. (1989)和Schmidt. (1992) 的研究,我们推测这也许反映的是一种降压的过程。然而,从成分剖面看(图3f),这种退变降压可能并不显著。此外,以基质和包体形式存在的两种闪石的成分也没有显著的成分差异(图4b, c)。其中基质和包体的铁闪石成分变化基本位于同一个区域(图4b),略有差异的是包体中的Mg/(Fe2++Mg)比值略高于基质的Mg/(Fe2++Mg)。对于包体中的铁普通角闪石其严格位于Fe-Hbl区域,而基质中铁普通角闪石主体位于Fe-Hbl区域,部分落入Fe-Ts区域(图4c)。
依据岩相学和矿物化学分析(图2e, f、图3),大致可以判定磁铁石榴角闪岩可能具有两个阶段的变质矿物组合:①阶段:Grt-I(核部)+Gru(包体)+Fe-Hbl(包体)+Qtz(包体)+Mag(包体);②阶段:Grt-II(边部)+Gru(基质)+Fe-Hbl(基质)+Qtz(基质)+Mag(基质)+Ap磷灰石(基质)。据此,本文对其进行了细致的温压评价。在成分选取方面,参照成分剖面的分析(图2e, f、图3),①阶段变质的成分选取石榴石核部,以及石榴石包体中的铁闪石、铁普通角闪石进行计算;②阶段变质的成分选取石榴石边部,基质中的铁闪石、铁普通角闪石核部或近边部的成分进行计算。同时,为保证分析计算的统计意义,本次研究在基质中共选取12个矿物对,包体中选取6个矿物对进行温压估算。基于Worley and Powell (2000)、Powell and Holland (2008)和魏春景等 (2009) 的研究,此次P-T条件的评价选用了Thermocalc version 3.33 (Holland and Powell, 1998) 平均温压法(av-PT)进行,计算结果见表2。由于①和②阶段的矿物组合基本类似,因此,这两个阶段的PT值基本是由6条独立反应线限定:
表2磁铁石榴角闪岩P(GPa)-T(℃)条件
Table 2TheP-Tconditions for magnet garnet amphibole
样品TPσTσPσfit包体17000.662490.673.2226880.672150.592.6636520.661790.532.4946440.842080.602.8956180.791620.472.2666160.851680.462.06基质76030.941780.442.1085970.631960.802.3196110.791310.361.67106300.591680.482.00116150.691510.411.82126140.801470.391.73136110.771460.391.78146370.841490.381.80156320.711440.401.78166430.511470.431.71176320.531470.421.64186120.941520.711.74
图5 磁铁石榴角闪岩峰期变质P-T条件图Fig.5 Plot of metamorphic peak P-T conditions of the magnet garnet amphibole
1) 10py+21fact=10gr+15grun+6tr
2) 4parg+12q=2gr+cumm+ts+2gl
3) 42parg+114q=14py+28gr+9cumm+21gl+12H2O
4) 7alm+12parg+36q=7py+6gr+3grun+3ts+6gl
5) 12parg+36q=2py+4gr+3tr+3ts+6gl
6) 3py+14gr+3grun+12q+12mt=11alm+12andr+3ts
对比石永红等(2009)对肥东群的研究,本次磁铁石榴角闪岩的变质条件明显高于他们的结果,但接近于王娟等(2014)确定的华北板块的东部陆块中的五河群变质条件。结合确定的变质年龄2450~2490Ma(见后述)和等压降温P-T样式分析(图5、图6g),该类岩石变质特征十分类似Zhao and Zhai (2013)确定的2.5Ga变质事件和演化过程。换言之,该岩石可能源于华北板块。
本次对磁铁石榴角闪岩(样品TF001-2)进行了锆石U-Pb定年。锆石单矿物挑选工作由河北省地勘局廊坊实验室完成,样品重约15kg,共挑选出约200单颗锆石。锆石制靶由合肥工业大学LA-ICPMS洁净实验室完成,锆石阴极发光(CL)照相由桂林理工大学电子探针实验室完成,仪器型号XM-Z09013TPCL。锆石U-Pb定年分析由合肥工业大学LA-ICPMS实验室完成,实验条件:激光器工作频率为10Hz,其中激光剥蚀束斑为32μm,信号有效采集时间为50s,每分析测试5个样品点测两次标准锆石91500。锆石数据处理采用ICPMSDateCal7.5软件(Ludwing, 2003)和ISOPLOT程序,单个测点同位素年龄的误差为1σ,加权平均年龄具有95%置信度。此外,锆石中矿物包体的测定由中国科学技术大学地球和空间科学学院拉曼实验室分析完成,仪器型Thermo Fisher DXR。年龄分析数据见表3。
根据显微镜下的透、反射光的研究,样品TF001-2中的锆石多为浑圆状或短柱状,自形程度较低,粒径50~300μm,长宽比为2:1~1:1。CL图像显示,锆石多为斑杂状分带、面状结构、云雾状分带,无震荡环带(图6a-c)。此外,这些锆石常具有较多的矿物包体,拉曼光谱分析显示这些包体多为角闪石和磷灰石(图6a-d)。
由于锆石粒径相对较小和激光剥蚀束斑较大的原因,本次锆石U-Pb定年仅获得了40个数据点,其中3个数据点为谐和年龄,其余数据点为不谐和年龄(表3)。3个谐和年龄的锆石的Th/U比值分别为0.09、0.11和0.15,基本上小于或约等于0.1,年龄分别是2473±15Ma、2490±18Ma和2450±15Ma,加权平均年龄为2469±49Ma(MSWD=1.5,n=3)(图6g)。而37个不谐和年龄的锆石的Th/U比值0.1~0.4(多为0.1),其年龄范围为2350~2490Ma,均位于不协和线上,上交点年龄为2458±25Ma(图6g)。结合CL图像分析,这些锆石应均为变质锆石(吴元保和郑永飞, 2004),故它们的年龄代表的是变质年龄。尽管,这里的上交点年龄并不能准确再现该变质事件的精确年龄,但其具有重要的参考价值。参照3个谐和年龄来看(图6g),上交点年龄与其十分类同,这意味着3个谐和年龄应该能较为确切地反映某一变质事件年龄。参照Gebaueretal. (1997)、Hermannetal. (2001)、吴元保和郑永飞(2004)、Liuetal. (2004, 2011)、Liuetal. (2007) 和Zheng (2008)的研究,并根据此次拉曼光谱和定年分析结果,我们认为这3个谐和年龄反映的是①和②阶段变质作用年龄,因为这3个年龄均是在含角闪石和磷灰石矿物包裹体附近区域获得的(图6a-d),而这些包体在①和②阶段变质矿物组合均普遍发育。
表3样品TF001-2锆石U-Pb定年分析数据
Table 3The zircon U-Pb date of the sample TF001-2
测点号232Th(×10-6)238U(×10-6)ThU206Pb(×10-6)同位素年龄(Ma)同位素比值207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σ140.91980.206596.902414112261142093110.15610.00108.26550.13100.38350.0024210.41090.096151.822422162265142093100.15690.00148.30660.12580.38360.0021312.995.30.135644.662456172246142031130.15890.00178.13460.12640.37040.0028431.61590.199375.952439142266132077130.15840.00138.31800.11730.38020.0028519.81840.107283.342439132227131997100.15840.00127.96370.11670.36310.0022620.21280.157643.542358181936151563150.15100.00155.73390.09640.27440.0029757.12630.2169112.1239810214210187970.15470.00097.24760.08410.33830.0014865.52250.2912111.9243910229311212790.15830.00098.56540.10500.39080.0020935.11590.220863.91239416209013179190.15420.00146.83180.09750.32020.00191037.31960.190383.82240511217113192580.15530.00117.47980.10450.34790.00171152.62550.206092.762350121992131662100.15020.00106.10990.08870.29420.00191227.31970.138481.84235012211313187680.15020.00107.01570.10210.33780.00171327.21650.165073.722388172189151979100.15380.00167.63820.12990.35940.00221419.71410.139562.932381132190161987130.15310.00117.63970.13510.36110.00261565.42370.2763111.7241611222116201290.15630.00107.91000.14390.36620.00191613.71070.128948.572422152250192060200.15680.00148.16750.17150.37660.00441730.02240.134198.342388112195161991150.15370.00107.68290.13760.36180.00321825.82330.1104101.73236112216414195970.15140.00117.42660.11450.35510.00161950.53730.1352139.4241610205214170680.15630.00096.54820.10370.30300.00172025.42310.109990.4823892112106171823170.15380.00106.95810.13660.32680.00362110.11100.092555.392473152378172265140.16160.00149.40490.17180.42100.00322216.61160.143148.972403172156161902120.15510.00157.35870.13450.34320.00252324.12080.115590.2723698217114196580.15200.00127.48140.11740.35630.00162410.189.50.113446.272490182387162267120.16330.00179.49700.16720.42150.00272510.41110.093150.802453192271172070130.15980.00138.36580.15790.37870.00272652.92270.2325103.72406112209172001110.15520.00107.80290.14490.36390.00232712.11050.115746.892417-1842240222038260.15640.00158.07690.19880.37190.00562831.41590.197864.85237717210714183990.15280.00146.96390.11210.33010.00182911.597.10.118248.282484152350152193120.16270.00149.11850.15150.40520.00253013.01050.124750.502450182292162116160.15950.00178.55960.15460.38850.00343116.01170.137352.16238315220115200680.15320.00137.74210.12510.36510.00183242.82430.176392.772444122083151732120.15890.00126.78100.11220.30820.00253316.11090.148155.882450152361142258110.15930.00149.22890.13820.41940.00253423.11480.156369.232455152302162128200.16000.00148.64880.14990.39120.00443528.11910.147180.92238914216013193380.15290.00127.39220.10850.34970.0017361052690.3899126.12408202214142006100.15560.00137.85270.11890.36510.00213713.11020.129046.572410162257172085200.15580.00148.23670.15430.38190.00433813.91480.094051.302376172010171662120.15250.00156.24260.11960.29410.00233927.31890.144485.332398212199171987140.15470.00197.71640.14210.36100.00294030.11470.205166.402413122219152009140.15590.00117.88970.12980.36570.0030
注:测点21、24、30三组数据为锆石谐和年龄数据
图6 样品TF001-2锆石CL图、包体拉曼光谱及U-Pb定年谐和图Fig.6 CL image, Raman spectra and concordia plots of zircons from sample TF001-2
目前,人们普遍认同郯庐断裂(安徽段)是华北和扬子板块的重要边界断裂,其左旋走滑错距长达>500km。主断裂严格地呈狭窄的线性条带发育于扬子板块内(Xuetal., 1987; Zhuetal., 2005, 2009, 2010; Zhangetal., 2007, 2013a, b; 朱光等, 2009; 赵田等, 2014),出露的宽度~5km(图1),而华北板块并未受到郯庐断裂明显的改造和影响。换言之,郯庐断裂带内的物质均由扬子板块构成,没有任何源于华北板块的物质。
通常认为华北和扬子板块的物质差异主要体现在年龄方面。Zhao and Zhai (2013) 的研究表明,华北板块最终拼合在1.85Ga完成,其内部出露有极少量的始太古(3.8~3.6Ga)岩石地块和部分2.8~2.7Ga初生陆壳。并强调华北板块主体是由2.6~2.5Ga高级片麻岩和低-中级花岗岩-绿岩构成,同时指出在~2.5Ga时期,华北东、西部陆块普遍经历了绿片岩相至麻粒岩相的逆时针等压降温变质作用,反映了源于地幔岩浆的底侵作用过程(Zhaoetal., 1998, 1999a, b; Zhao and zhai, 2013)。而1.95~1.85Ga变质年龄则反映了华北板块上西部、中部和东部陆块的彼此之间碰撞俯冲时限。具体到郯庐断裂西侧的华北东部陆块(图1中的插图),Zhao and Zhai (2013) 认为该陆块在2.2~1.9Ga形成陆内裂谷(张秋生, 1988; Lietal., 2004, 2005, 2006),形成Longgang和Nangrim 2个块体,并于1.9Ga时间俯冲碰撞拼合完成。相比较而言,扬子板块的岩石年龄具有较广的年龄范围,根据前人的研究其大致可分为7个年龄区间3.3~2.9Ga、2.7~2.5Ga、2.0~1.7Ga、~1.0Ga、850~650Ma、480~400Ma和245~200Ma(Hackeretal., 1998, 2006; Qiuetal., 2000; Ratschbacheretal., 2003, 2006; Wuetal., 2004; Zhengetal., 2007, 2008; Chenetal., 2003, 2009; Zhangetal., 2006; 郑永飞和张少兵, 2007; Gaoetal., 2011; 魏君奇等, 2012),其中后三个年龄范围在扬子板块内普遍发育,而前三个较老的年龄在扬子板块上出露极少,且2.7~2.5Ga反映的是角闪岩相的变质事件。
对比本次张八岭隆起区的肥东群中的磁铁石榴角闪岩的年代学和变质岩石学的研究来看,磁铁石榴角闪岩中的3颗变质锆石的谐和年龄在2450~2490Ma,加权平均年龄为2496±49Ma,其十分接近于华北板块的~2.5Ga的变质年龄。而其他37颗变质锆石的不谐和年龄变化也较为单一,基本上在2350~2484Ma范围(表3),这暗示了该岩石类型可能源于华北板块。然而,根据Qiuetal. (2000)和魏君奇等(2012)的研究,该年龄也同样落入扬子板块的2.7~2.5Ga的范围,似乎该岩石具扬子板块的亲缘性。对此,本文没有较为明确的结论。这里也许可以假设两种情形:(1)磁铁石榴角闪岩属于华北板块物质,由于郯庐断裂的左旋走滑作用,其呈构造透镜体的形式被卷入郯庐断裂带内;(2)该岩石本身就归属于扬子板块,可能是郯庐断裂带(安徽段)内出露的最老的岩石。
然而,结合地质背景、构造地质学和变质岩石学的研究,本次研究更倾向于前一种认识。主要理由是:(a)从地质背景来看,磁铁石榴角闪岩在华北东部陆块(安徽段)的五河杂岩和霍邱群中广泛发育该类岩石(安徽省地质矿产局, 1987; 杨晓勇等, 2012),而安徽境内的扬子板块则没有这类相关类型岩石的确证。这暗示了该类岩石可能的物源来自于华北板块;(b)在年龄变化方面,磁铁石榴角闪岩的年龄十分单一,基本在~2.5Ga时间段(表1),缺乏任何类似于扬子板块的较为年轻的年龄(850~650Ma、480~400Ma和245~200Ma)。且该年龄十分接近郯庐断裂西侧华北东部陆块的年龄(Liuetal., 2009; 许文良等, 2006; 杨晓勇等, 2012; 图1中插图),这从另一个侧面反映了该岩石具华北板块亲缘性;(c)从变质P-T演化来看,磁铁石榴角闪岩显示了轻微的等压降温特征(图5),与Zhao and Zhai (2013)阐述的华北东、西部陆块在~2.5Ga发生的源于地幔岩浆的底侵事件十分吻合。此外,该岩石的变质P-T条件也十分类似于五河群中石榴角闪岩的变质条件(王娟等, 2014),明显不同于肥东群的变质条件(石永红等, 2009);(d)构造地质学分析显示,磁铁石榴角闪岩及其围岩是呈构造透镜体产于变形的花岗岩之中,周边被糜棱岩所限定(图1b)。其面理和线理与郯庐断裂带中韧性剪切带的面理和线理呈大角度相交,暗示了其可能为一个外来的构造块体,并非原地物质。基于本次研究的结果,我们认为张八岭隆起区的肥东群中的磁铁石榴角闪岩可能来源于华北板块,由于郯庐断裂的左旋走滑作用被构造并置于扬子板块中。进一步地,可以推测郯庐断裂东侧界限位于方集-蛮山口以东的全椒盆地中,结合赵田等(2014)研究可以看出,该断裂在横向上(安徽段)的宽度至少在10~15km范围(图1)。
致谢感谢朱光教授在本文撰写过程中的支持与帮助;感谢吴春明教授和林伟研究员对本文的审阅及意见。
Bureau of Geology and Mineral Resources of Anhui Province. 1987. Regional Geology of Anhui Province. Beijing: Geological Publishing House (in Chinese)
Chang EZ. 1996. Collisional orogene between North and South China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13(3-5): 267-277
Chen FK, Guo JH, Jiang LL, Siebel W, Cong B and Satir M. 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: Evidence from zircon ages. Journal of Asian Earth Sciences, 22(4): 343-352
Chen FK, Zhu XY, Wang W, Wang F, HieuPTand Siebel W. 2009. Single-grain detrital muscovite Rb-Sr isotopic composition as an indicator of provenance for the Carboniferous sedimentary rocks in northern Dabie, China. Geochemical Journal, 43(4): 257-273
Chung SL. 1999. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China. The Journal of Geology, 107(3): 301-312
Droop GTB. 1987. A general equation for estimating Fe3+concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51: 431-435
Gao S, Jie Y, Zhao L, Li M, Hu ZC, Guo JL, Yuan HL, Gong HJ, Xiao GG and Wei JQ. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3Ga granitoid gneisses. American Journal of Science, 311(2): 1-30
Gebauer D, Schertl HP, Brix M and Schreyer W. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos, 41(1): 5-24
Gilder SA, Leloup PH, Courtillot V, Chen Y, Coe RS, Zhao XX, Halim WN, Cogne JP and Zhu R. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 104(B7): 15365-15390
Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Shuwen D. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1): 215-230
Hacker BR, Wallis SR, Ratschbacher L, Grove M and Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(5), doi: 10.1029/2005TC001937
Hammarstrom JM and Zen E. 1986. Aluminum in hornblende: An empirical geobarometer. America Mineralogist, 71(11-12): 1297-1313
Hermann J, Rubatto D, Korsakov A and Shatsky V. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82
Holland T, Baker J and Powell R. 1998. Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395-406
Hollister LS, Grisson GC, Peters EK, Stowell HH and Sisson VB. 1987. Confirmation of the empirical correlation of aluminum in hornblende with pressure of solidification of calc-alkaline pluton. America Mineralogist, 72(3-4): 231-239
Hsu KJ, Li J, Chen I, Wang Q and Sun S. 1987. Tectonic evolution of Qinling Mountains, China. Eclogae Geol. Helv., 80: 735-752
Johnson W and Rutherford MJ. 1989. Experimental calibration of the aluminum-in hornbende geobarometer with application to Long Valley Caldra (California) volcanic rocks. Geology, 17(9): 837-841
Kang T, Liu XY, Wang J, Nie F and Shi YH. 2013. Analysis of metamorphic attribution and geochronology for the Feidong terrane in the east of the Tan-Lu Fault. Acta Petrologica Sinica, 29(9): 3142-3158 (in Chinese with English abstract)
Li SZ, Zhao GC, Sun M, Wu FY, Liu JZ, Hao DF, Han ZZ and Luo Y. 2004. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, Eastern Block, North China Craton. International Geology Review, 46(2): 162-176
Li SZ, Zhao GC, Sun M, Wu FY, Hao DF, Han ZZ, Luo Y and Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 654-674
Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT and Hao DF. 2006. Are the South and North Liaohe Groups of the North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9(1-2): 198-208
Li ZX. 1994. Collision between the north and south blocks: A crustdetachment model for suturing in the region east of the Tan-Lu fault. Geology, 22(8): 739-742
Lin JL and Fuller M. 1990. Paleomagnetism, North and South China collision, and the Tan-Lu fault. Philosophy Transaction of Royal Society of London A, 331(1620): 589-598
Lin SF and Li ZX. 1995. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault: Comment. Geology, 23(6): 574-575
Lin W, Faure M, Wang QC, Monié P and Panis D. 2005. Triassic polyphase deformation in the Feidong-Zhangbaling Massif (Eastern China) and its place in the collision between the North China and South China Blocks. Journal of Asia Earth Sciences, 25(1): 121-136
Lin W, Shi YH and Wang QC. 2009. Exhumation tectonics of the HP-UHP orogenic belt in eastern China: New structural-petrological insights from the Tongcheng massif, eastern Dabieshan. Lithos, 109(3-4): 285-303
Liu FL, Xu ZQ, Liou JG and Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamor-phism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4): 315-326
Liu FL and Liou JG. 2011. Zircon as the best mineral forP-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39
Liu YC, Li SG and Xu ST. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie highT/Pmetamorphic zone, central China: Implications for decoupling with subducted continental crust. Lithos, 96(1): 170-185
Liu YC, Wang AD, Rolfo F, Groppo C, Gu XF and Song B. 2009. Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China Craton. Journal of Metamorphic Geology, 27(2): 125-138
Ludwig KR. 2003. User’s Manual for Isoplot/Exersion 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, 4: 1-70
Meng QR, Li SY and Li RW. 2007. Mesozoic evolution of the Hefei basin in eastern China: Sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault. Geological Society of America Bulletin, 119(7-8): 897-916
Niu ML, Zhu G, Liu GS, Wang DX and Song CZ. 2002. Tectonic setting and deep processes of Mesozoic magmatism in middle-south segment of the Tan-Lu fault. Chinese Journal of Geology, 37(4): 393-404 (in Chinese with English abstract)
Niu ML, Zhu G, Liu GS and Song CZ. 2005. Correlation studies of rare earth elements in syntectonic intrusions of strike-slip stage along southern segment of Tanlu Fault Zone. Journal of The Chinese Rare Earth Society, 23(2): 235-238 (in Chinese with English abstract)
Niu ML. 2006.40Ar/39Ar dating of biotite from the Mesozoic intrusions in Zhangbaling area and its geological significance. Chinese Journal of Geology, 41(2): 217-225 (in Chinese with English abstract)
Okay AI and Sengor AMC. 1992. Evidence for intracontinental thrust related exhumation of the ultra-high-pressure rocks in China. Geology, 20(5): 411-414
Powell R and Holland TJB. 2008. On thermobarometry. Journal of Metamorphic Geology, 26(2): 155-179
Qiu YM, Gao S, McNaughton NJ, Groves DI and Ling WL. 2000. First evidence of >3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11-14
Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, Mcwilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1): 1-53
Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Hacker BR, Dong SW and Zhang YQ. 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Geological Society of America, 403: 43-75
Schmid JC, Ratschbacher L, Hacker BR, Gaitzsch I and Dong SW. 1999. How did the foreland react? Yangtze foreland fold-and-thrust belt deformation related to exhumation of the Dabie Shan ultrahigh-pressure continental crust (eastern China). Terra Nova, 11(6): 266-272
Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol., 110(2-3): 304-310
Shi YH, Zhu G and Wang DX. 2009. MetamorphicP-Tevolution for the garnet amphibolite from Feidong Group in the south of Zhangbaling uplift across Tan-Lu fault and its influence on tectonics. Acta Petrologica Sinica, 25(12): 3335-3345 (in Chinese with English bstract)
Wan TF and Zhu H. 1996. The maximum sinistral strike-slip and its forming age of Tancheng-Lujiang fault zone. Geological Journal of Universities, 2(1): 14-27 (in Chinese with English abstract)
Wang EC, Meng QR, Burchfiel BC and Zhang GW. 2003. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in East China. Geology, 31(4): 307-310
Wang J, Huang B, Pu XP, Kang T and Shi YH. 2014. The investigation on metamorphic petrology andP-Tconditions of Wuhe complex rocks: Evidences from Drill ZK02 in the south of Mengcheng area. Chinese Journal of Geology, 49(2): 556-575 (in Chinese with English abstract)
Wang XF, Li ZG, Chen BL, Zhang Q, Chen XH, Xing LS, Chen ZL, Dong SW and Wu HM. 1998. Formation and evolution of the Tan-Lu strike-slip fault system and its geological significance. In: Zheng YD (ed.). Proceedings of 30thInternational Geological Congress, Vol. 14. Beijing: Geological Publishing House, 176-196 (in Chinese with English abstract)
Wang YS, Zhu G, Liu GS and Wang DX. 2004. Evolution of sericite polytype and crystallinity during myionization: Examples from the southern part of Tan-Lu fault zones. Acta Petrologica Sinica, 20(6): 1485-1492 (in Chinese with English abstract)
Wang YS and Zhu G. 2005. Cooling and deformation ages in40Ar/39Ar dating. Geological Bulletin of China, 24(3): 285-290 (in Chinese with English abstract)
Wang YS, Zhu G, Chen W, Song CZ and Liu GS. 2005. Thermochronologic information from the Tan-Lu fault zone and its relationship with the exhumation of the Dabie Mountains. Geochimica, 34(3): 193-215 (in Chinese with English abstract)
Wang YS, Zhu G, Song CZ, Liu GS, Xiang BW, Li CC and Xie CL. 2006.40Ar-39Ar geochronology records of transition from strike-slip to extension in the Tan-Lu fault zone on eastern terminal of the Dabie Mountains. Chinese Journal of Geology, 41(2): 242-255 (in Chinese with English abstract)
Watson MP, Hayward AB and Parkingson DN. 1987. Plate tectonics history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 4(3): 205-225
Wei CJ and Shan ZG. 1997. Metamorphism of the Susong complex from the southern Dabie Mountains, Anhui Province. Acta Petrologica Sinica, 13(3): 356-368 (in Chinese with English abstract)
Wei JQ and Wang JX. 2012. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling complex. Geological Journal of China Universities, 18(4): 589-600 (in Chinese with English abstract)
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187
Worley B and Powell R. 2000. High-precision relative thermobarometry: Theory and a worked example. Journal of Metamorphic Geology, 18(1): 91-102
Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology, 45(9): 1907-1921
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese)
Xu JW. 1980. The great left-lateral horizontal displacement of Tancheng-Lujiang fault zone, eastern China. Journal of Hefei Polytechnic University (Natural Science), (1): 1-26 (in Chinese with English abstract)
Xu JW, Zhu G, Tong WX, Cui KR and Liu Q. 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northern of the Pacific Ocean. Tectonophysics, 134(4): 273-310
Xu JW and Zhu G. 1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review, 36(8): 771-784
Xu WL, Yang DB, Pei FP, Yang CH, Liu XM and Hu ZC. 2006. Age of the Wuhe complex in the Bengbu uplift: Evidence from LA-ICP-MS zircon U-Pb dating. Geology in China, 33(1): 132-137 (in Chinese with English abstract)
Yang XY, Wang BH, Du ZB, Wang QC, Wang YX, Tu ZB, Zhang WL and Sun WD. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China carton. Acta Petrologica Sinica, 28(11): 3476-3496 (in Chinese with English abstract)
Yin A and Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4): 801-813
Yu ZQ, LI YX and Xiao LL. 2009. Polymetamorphism, polyphase metamorphism and metamorphicP-T-tpaths. Bulletin of Mineralogy, Petrology and Geochemistry, 28(2): 189-194 (in Chinese with English abstract)
Zhang KJ. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics, 270(1-2): 145-156
Zhang Q, Jim D and Zhu G. 2007. Oblique collision between North and South China recorded in Zhangbaling and Fucha Shan (Dabie-Sulu transfer zone). The Geology Society America, 434: 167-206
Zhang Q and Teyssier C. 2013. Flow vorticity in Zhangbaling transpressional attachment zone, SE China. Journal of Structural Geology, 48: 72-84
Zhang Q, Giorgis S and Teyssier C. 2013. Finite strain analysis of the Zhangbaling metamorphic belt, SE China: Crustal thinning in transpression. Journal of Structural Geology, 49: 13-22
Zhang QS. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House (in Chinese)
Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006. Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze craton of China. Precambian Research, 146(1-2): 16-34
Zhang ZM, Liou JG and Coleman RG. 1984. An outline of the plate tectonics of China. Geol. Soc. Am. Bull., 95(3): 295-312
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40(8): 706-721
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999a. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53
Zhao GC, Cawood PA and Lu LZ. 1999b. Petrology andP-Thistory of the Wutai amphibolites: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Research, 93(2-3): 181-199
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240
Zhao T, Zhu G, Lin SZ, Yan LJ and Jiang QQ. 2014. Protolith ages and deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone. Scientia Sinica (Terrae), in press (in Chinese)
Zheng YF and Zhang SB. 2007. Fromation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese)
Zheng YF, Gao TS, Wu YB, Gong B and Liu XM. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267-283
Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(20): 3081-3104
Zhu G, Xu JW, Liu GS, Li SY and Yu PY. 1998. Tectonic control on development of the foreland basin along the Yangtze River in the Lower Yangtze River region. Geological Review, 44(2): 120-129 (in Chinese with English abstract)
Zhu G, Wang DX, Liu GS, Song CZ, Xu JW and Niu ML. 2001. Extensional activities along the Tan-Lu fault zone and its geodynamic setting. Chinese Journal of Geology, 36(3): 269-278 (in Chinese with English abstract)
Zhu G, Niu ML, Liu GS, Wang DX and Song CZ. 2002. Structural, magmatic and sedimentary events of the Tan-Lu fault belt during its Early Cretaceous strike-slip movement. Acta Geologica Sinica, 76(3): 325-334 (in Chinese with English abstract)
Zhu G, Liu GS, Niu ML, Song CZ and Wang DX. 2003. Transcurrent movement and genesis of the Tan-Lu fault zone. Geological Bulletin of China, 22(3): 200-208 (in Chinese with English abstract)
Zhu G, Wang YS, Niu ML, Liu GS and Xie CL. 2004. Synorogenic movement of the Tan-Lu fault zone. Earth Science Frontiers, 11(3): 169-182 (in Chinese with English abstract)
Zhu G, Wang YS, Liu GS, Niu ML, Xie CL and Li CC. 2005.40Ar/39Ar dating of strike-slip motion on the Tan-Lu Fault Zone, East China. Journal of Structural Geology, 27(8): 1379-1398
Zhu G, Xie CL, Wang YS, Niu ML and Liu GS. 2005a. Characteristics of the Tan-Lu high-pressure strike-slip ductile shear zone and its40Ar/39Ar dating. Acta Petrologica Sinica, 21(6): 1687-1702 (in Chinese with English abstract)
Zhu G, Niu ML, Liu GS, Wang YS, Xie CL and Li CC. 2005b.40Ar/39Ar dating for the strike-slip movement on the Feidong part of the Tan-Lu fault belt. Acta Geologica Sinica, 79(3): 303-316 (in Chinese with English abstract)
Zhu G, Wang YS, Wang DX, Niu ML, Liu GS and Xie CL. 2006a. Constraints of foreland sedimentation and deformation on synorogenic motion of the Tan-Lu fault zone. Chinese Journal of Geology, 41(1): 102-121 (in Chinese with English abstract)
Zhu G, Xu YD, Liu GS, Wang YS and Xie CL. 2006b. Structural and deformational characteristics of strike-slippings along the middle-southern sector of the Tan-Lu fault zone. Chinese Journal of Geology, 41(2): 226-241 (in Chinese with English abstract)
Zhu G, Liu GS, Niu ML, Xie CL, Wang YS and Xiang BW. 2009. Syn-collisional transform faulting of the Tan-Lu Fault Zone, East China. International Journal of Earth Sciences, 98(1): 135-155
Zhu G, Zhang L, Xie CL, Niu ML and Wang YS. 2009. Geochronological constraints on tectonic evolution of the Tan-Lu fault zone. Chinese Journal of Geology, 44(4): 1327-1342 (in Chinese with English abstract)
Zhu G, Niu ML, Xie CL and Wang YS. 2010. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277-293
附中文参考文献
安徽省地质矿产局. 1987. 安徽省区域地质志. 北京: 地质出版社
康涛, 刘晓燕, 王娟, 聂峰, 石永红. 2013. 郯庐断裂东侧肥东地块变质属性及年代学研究. 岩石学报, 29(9): 3142-3158
牛漫兰, 朱光, 刘国生, 王道轩, 宋传中. 2002. 郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程. 地质科学, 37(4): 393-404
牛漫兰, 朱光, 刘国生, 宋传中. 2005. 郯庐断裂带南段走滑期同构造岩体的稀土元素对比研究. 中国稀土学报, 23(2): 235-238
牛漫兰. 2006. 张八岭地区中生代岩体中黑云母的40Ar/39Ar年龄及其地质意义. 地质科学, 41(2): 217-225
石永红, 朱光, 王道轩. 2009. 郯庐断裂带张八岭隆起南段肥东群石榴角闪岩变质P-T演化史对其构造属性的制约. 岩石学报, 25(12): 3335-3345
万天丰, 朱鸿. 1996. 郯庐断裂带的最大左行走滑断距及其形成时期. 高校地质学报, 2(1): 14-27
王娟, 黄博, 卜香萍, 康涛, 石永红. 2014. 五河杂岩的变质岩石学及P-T条件分析——来自蒙城南ZK02钻孔的研究. 地质科学, 49(2): 556-575
王小凤, 李中坚, 陈柏林, 张清, 陈宣华, 邢历生, 陈正乐, 董树文, 邬华梅. 1998. 郯庐走滑断裂系的形成演化及其地质意义. 见: 郑亚东主编. 第30届国际地质大会论文集14. 北京: 地质出版社, 176-196
王勇生, 朱光, 刘国生, 王道轩. 2004. 糜棱岩化过程中细粒白云母多型与结晶度的演变——以郯庐断裂带南段为例. 岩石学报, 20(6): 1485-1492
王勇生, 朱光. 2005.40Ar/39Ar测年中的冷却年龄和变形年龄. 地质通报, 24(3): 285-290
王勇生, 朱光, 陈文, 宋传中, 刘国生. 2005. 郯庐断裂带热年代学信息及其与大别造山带折返的关系. 地球化学, 34(3): 193-215
王勇生, 朱光, 宋传中, 刘国生, 向必伟, 李长城, 谢成龙. 2006. 大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar-39Ar年代学记录. 地质科学, 41(2): 242-255
魏春景, 单振刚. 1997. 安徽省大别山南部宿松杂岩变质作用研究. 岩石学报, 13(3): 356-368
魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成. 高校地质学报, 18(4): 589-600
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
徐嘉伟. 1980. 郯-庐断裂带巨大的左行平移运动. 合肥工业大学学报, (1): 1-26
许文良, 杨德彬, 裴福萍, 杨承海, 柳小明, 胡兆初. 2006. 蚌埠隆起区五河杂岩的形成时代:锆石LA-ICP-MSU-Pb定年证据. 中国地质, 33(1): 132-137
杨晓勇, 王波华, 杜贞保, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476-3496
于振清, 李艳霞, 肖玲玲. 2009. 多期变质作用、多相变质作用与变质作用P-T-t轨迹. 矿物岩石地球化学通报, 28(2): 189-194
赵田, 朱光, 林少泽, 严乐佳, 姜芹芹. 2014. 郯庐断裂带张八岭隆起段变质岩的原岩时代与变形机制. 中国科学(地球科学),待刊
张秋生. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社
郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10
朱光, 徐嘉伟, 刘国生, 李双应, 虞培玉. 1998. 下扬杨子地区沿江前陆盆地形成的构造控制. 地质论评, 44(2): 120-129
朱光, 王道轩, 刘国生, 宋传中, 徐嘉伟, 牛漫兰. 2001. 郯庐断裂带的伸展活动及其动力学背景. 地质科学, 36(3): 269-278
朱光, 牛漫兰, 刘国生, 王道轩, 宋传中. 2002. 郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件. 地质学报, 76(3): 325-334
朱光, 刘国生, 牛漫兰, 宋传中, 王道轩. 2003. 郯庐断裂带的平移运动与成因. 地质通报, 22(3): 200-208
朱光, 王勇生, 牛漫兰, 刘国生, 谢成龙. 2004. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-182
朱光, 谢成龙, 王勇生, 牛漫兰, 刘国生. 2005a. 郯庐高压走滑韧性剪切带特征及其40Ar/39Ar定年. 岩石学报, 21(6): 1687-1702
朱光, 牛漫兰, 刘国生, 王勇生, 谢成龙, 李长城. 2005b. 郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年. 地质学报, 79(3): 303-316
朱光, 王勇生, 王道轩, 牛漫兰, 刘国生, 谢成龙. 2006a. 前陆沉积与变形对郯庐断裂带同造山运动的制约. 地质科学, 41(1): 102-121
朱光, 徐佑德, 刘国生, 王勇生, 谢成龙. 2006b. 郯庐断裂带中-南段走滑构造特征与变形规律. 地质科学, 41(2): 226-241
朱光, 张力, 谢成龙, 牛漫兰, 王勇生. 2009. 郯庐断裂带构造演化的同位素年代学制约. 地质科学, 44(4): 1327-1342