东天山圪塔山口镁铁-超镁铁质岩体地球化学、锆石U-Pb年代学及其对Ni-Cu成矿的指示*

2014-04-10 01:22冯宏业许英霞秦克章唐冬梅郭海兵三金柱毛亚晶
岩石学报 2014年6期
关键词:东天山辉长岩铁质

冯宏业 许英霞 秦克章 唐冬梅 郭海兵 三金柱 毛亚晶,4

1. 河北联合大学矿业工程学院地质系,唐山 0630092. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 1000293. 新疆有色地勘局704队,哈密 8390004. 中国科学院新疆矿产资源研究中心,中国科学院新疆生态与地理研究所,乌鲁木齐 8300111.

新疆新近发现的圪塔山口镍铜硫化物矿床位于东天山康古尔-黄山镍铜硫化物成矿带的东端。矿区包含4个镁铁-超镁铁质岩体,其中Ⅰ、Ⅱ、Ⅲ号岩体均见镍铜硫化物矿化。本文利用SIMS锆石U-Pb法测得Ⅰ号矿化岩体辉长岩年龄为282.6±1.9Ma,不仅与东天山地区其它含Ni-Cu矿化的镁铁-超镁铁质岩体形成时代一致,而且与塔里木玄武岩、镁铁质岩墙及北山地区的镁铁-超镁铁质岩体形成时限相一致。其形成可能与造山后伸展背景下的地幔柱叠加作用有关。地球化学数据表明圪塔山口岩体具有高Mg特征,除2个辉长岩样品m/f值较低外,其余14个样品集中于2.73~5.05之间,属铁质超基性岩。岩石稀土元素配分模式为右倾式,轻、重稀土比2.64~3.39;含长角闪辉橄岩及部分含长角闪橄辉岩和含长橄辉岩δEu具正异常,可能与这3个岩相中存在斜长石的结晶有关。微量元素蛛网图表明岩石富集大离子亲石元素Cs、Rb、Ba、K、Sr,富集高场强元素U、Pb,亏损高场强元素Th、Nb等特征。主量元素SiO2-(Na2O+K2O)与(FeOT/MgO)-FeOT图解、微量元素相关图及微量元素比值相关图说明圪塔山口岩体成岩物质为来源于亏损地幔的钙碱性玄武质岩浆,成岩作用以岩浆结晶分异为主导,并受到地壳的混染作用,具有较好的镍铜硫化物矿床成矿潜力。

镁铁-超镁铁质岩;地球化学;锆石U-Pb测年;镍铜硫化物成矿潜力;圪塔山口;东天山

东疆地区是我国重要的铜、镍、金成矿带,其中与镍铜硫化物矿床相关的镁铁-超镁铁质岩体主要聚集在东天山地区的康古尔-黄山韧性剪切带中(毛景文等,2002;秦克章等,2002,2007;Qinetal., 2003,2011;Xuetal., 2003)。许多学者对东天山镍铜成矿带进行过研究(倪志耀,1991,1992;秦克章,2000;王登红等,2000;毛景文等,2002;Xuetal., 2003;王玉往等,2004,2009;秦克章等,2003,2012;孙赫等,2006,2008;唐冬梅等,2009a;Tangetal., 2011;三金柱等,2007,2010)。区内含镍铜硫化物的镁铁-超镁铁质岩体多沿康古尔-黄山深大断裂分布,新近发现的圪塔山口含硫化物镁铁-超镁铁质岩体紧邻康古尔-黄山深大断裂,位于图拉尔根大型铜镍钴矿床的东部,相距仅18km,研究程度甚低,成岩成矿过程与时代等均未查明。而其成岩成矿时代与东天山其它镁铁-超镁铁质岩体是否一致、岩浆源区是否相同均不明确,直接影响对其成矿前景的判断。为了确定圪塔山口岩体的成岩成矿年龄及源区特征,本文选取了矿区Ⅰ号含矿岩体的辉长岩进行了SIMS锆石U-Pb年龄测试,并选择了不同岩性的代表性样品进行了岩石主、微量元素地球化学分析研究,为判别其成矿地质背景与成矿潜力提供地球化学和年代学制约。

1 区域地质背景

圪塔山口镍铜矿床大地构造位置上处于准噶尔与东天山觉罗塔格古生代沟-弧-盆体系拼接所形成的康古尔塔格-黄山韧性剪切带上,区域上位于东天山镍-铜成矿带的东端(图1)。东天山地区经历了多次构造运动,以发育东西向和北东东向区域性深大断裂及韧性剪切断层为特征,这些断裂构造为镁铁-超镁铁质岩浆的就位与成矿提供了有利的导矿和容矿空间。沿康古尔-黄山深大断裂,动力变质作用极其强烈,形成规模巨大的韧性剪切带,以强烈挤压、走滑兼韧性剪切为特征(Xuetal., 2003)。

区域内出露地层主要为古生界的石炭系和泥盆系,其次为中上元古界和新生界地层。中上元古界主要分布于中天山和北山地区,为一套变质碳酸盐岩-碎屑岩地层。泥盆系和石炭系大多分布于沙泉子断裂带以北,主要为一套海相火山喷发-沉积建造。新生界主要为陆相碎屑沉积物,广泛分布于区内低洼地带。

区内岩浆岩发育,侵入岩以中酸性岩类为主,其次为基性、超基性岩类,多为华力西期产物。火山岩类以基性熔岩、中酸性熔岩及火山碎屑岩最为常见。岩体与火山岩由于受区域深大断裂控制而多沿断裂构造的延伸方向展布。沿康古尔-黄山韧性剪切带形成镁铁-超镁铁质侵入岩带,呈北东东向带状分布,从西向东分布有土墩、二红洼、香山、黄山南、黄山、黄山东、葫芦、马蹄、咸水泉、图拉尔根、圪塔山口、四顶黑山等多个岩体(图1)。

2 矿区地质与岩体特征

圪塔山口为东天山镍铜成矿带东端新发现的含镍铜岩体,系新疆有色地勘局704队近年来1:5万矿调过程中的重要发现。矿区由4个镁铁-超镁铁质岩体组成,出露地层主要为下泥盆统大南湖组和新生界地层(图2a)。大南湖组(D1d)地层分布在康古尔-黄山断裂带北部,呈北东东向大面积展布,为一套海相火山喷发-沉积建造、火山碎屑沉积建造,可分为四个亚组,每个亚组之间都为断层接触。矿区内仅见有第一亚组(D1d1)的一套深灰色、灰绿色、灰紫色、紫红色厚层状安山质、英安质熔岩、火山碎屑岩及灰绿色、紫红色砂岩。新生界地层主要为第四系上更新统-全新统(Q3-4Pl)和(Q4Pl),分布于工作区中部大沟及北西部洼地内,由一套洪积物,主要由砂、砾石及亚砂土组成。

受区域性深大断裂的控制,矿区内断裂破碎带均沿北东东向分布,以强烈挤压、走滑兼韧性剪切为特征,地表岩石多表现为强片理化及断层破碎,带内岩石具强烈糜棱岩化和塑性变形特征。该断裂带对区内基性岩体的侵入具有十分重要的控制作用。

区内出露的岩浆岩多以侵入岩为主,为华力西期的产物。沿北东向分布有一系列闪长岩、安山玢岩、花岗岩及4个镁铁-超镁铁质岩体,其中除Ⅳ号岩体沿北西向延伸外,其它3个岩体均呈脉状,沿北东东向展布(图2a)。

图1 东天山区域地质简图与圪塔山口Ni-Cu硫化物矿化岩体大地构造位置(据秦克章等,2002,2007补充修改)1-第四纪;2-泥盆纪-石炭纪沉积火山岩、变质火山岩;3-早石炭纪弧火山岩;4-泥盆纪火山岩;5-前寒武纪变质岩;6-康古尔-黄山韧性剪切带;7-镁铁-超镁铁质岩体;8-实测断层;9-推测断层;10-研究区Fig.1 The regional geological map of eastern Tianshan and location of Getashankou Ni-Cu bearing intrusion (Revised after Qin et al., 2002, 2007)1-Quarterary; 2-Devonian-Carboniferous metamorphosed volcano-sedimentary rocks; 3-Early Carboniferous arc-volcanic rocks; 4-Devonian volcanic rocks; 5-Pre-Camberian metamorphic basement; 6-Kanggur-Huangshan ductile shear zone; 7-mafic-ultramafic intrusion; 8-measured fault; 9-inferred fault; 10-study area

Ⅰ号岩体:地表露头长300m,宽100m,呈北东东向延伸的透镜状,倾向南东,倾角65°~69°左右。地表出露岩性主要为石英闪长岩、闪长岩、角闪辉长岩、辉长岩、辉石橄榄岩,岩浆分异演化完全。地表球形风化发育,局部见有星点状孔雀石。岩体与围岩界线清楚,接触带内局部可见细脉状的石英脉。岩石蚀变强烈,主要有蛇纹石化、石棉化、透闪石化及褐铁矿化等。镍铜矿化主要分布于角闪辉长岩和辉石橄榄岩中,见有星点状黄铁矿、磁黄铁矿和黄铜矿(图3a)。

Ⅱ号岩体:呈条带状,长400m,宽10~40m,岩体走向约60°,倾向南,倾角45°~69°。平面上呈环带状岩相分带,沿图2a中勘探线方向自北向南岩性依次为:角闪辉长岩相→辉石橄榄岩相→橄榄辉石岩相→辉长岩相,相邻岩相间为渐变过渡接触,指示分异演化完全。矿体位于岩体的中上部,主要赋存于橄榄岩相及橄榄辉石岩相中,这两种岩相具全岩矿化特征。地表角闪辉长岩为块状;橄榄岩为粉末状、碎粒状,岩石强烈蚀变,橄榄石多变为蛇纹石(图3b)或纤维状石棉,部分风化成褐黄色、褐红色、红色土状粉末,品位较高,见有镍华(图3c);橄榄辉石岩多呈碎粒状、羊粪蛋状,见有大量网脉状、纤维状的石棉;辉长岩为碎块状。岩体深部总体表现为一透镜状岩体,西端埋深较小,东端埋深较大,与地表水平分带特征相对应,岩体在垂向上也存在岩相分带特征,即中心为橄榄辉石岩相与橄榄岩相,上部为角闪辉长岩相,下部辉长岩相(图2b),各岩相之间无明显界线。其中橄榄辉石岩相占岩体的大部分,该岩相局部存在矿化富集,形成低品位矿体;橄榄岩相位于岩体的中上部,为矿化最富集的赋矿岩相,往往形成高品位矿体,主要矿石矿物为磁黄铁矿,其次为黄铜矿和镍黄铁矿(图3d);辉长岩相中仅见到少量的矿化。硫化物组合与结构构造与东天山区域上的已知铜镍矿床(丁奎首等,2007)相似。

Ⅲ号岩体:位于Ⅰ号岩体东部,Ⅱ号岩体北侧,呈脉状延伸,沿走向(70°)长约700m,宽5~36m,倾向南东,倾角52°~67°,岩体在地表可分为两个岩相,上盘为辉长岩相,下盘为辉橄岩相,二者呈渐变过渡关系(图3e),岩性主要为角闪辉长岩及含长辉橄岩,含长辉橄岩位于岩体下盘,其下与一套厚约1~6m的灰黑色炭质片岩呈断层接触。地表岩石呈粉末状、 碎粒状, 蚀变强烈,主要为蛇纹石化、透闪石化。岩石中可见有大量的褐铁矿,局部富集形成黄褐色铁帽带,铁帽带中见有大量孔雀石(图3f)。岩体在垂向上具有薄层状辉长岩相-橄榄岩相-角闪辉长岩相的分带特征。岩体整体表现为西端基性程度相对较低,向东基性程度逐渐增高,局部见有橄榄岩相。矿石大部分为星点状、浸染状-稠密浸染状、海绵陨铁结构的矿石,局部出现了贯入式块状矿石(图3g)。

图2圪塔山口矿区地质简图(a)与6号勘探线剖面图(b)(据新疆有色地勘局704队,2011*新疆有色地勘局704队.2011.新疆哈密市头苏泉地区铜镍金矿普查年度总结报告(2011年度)修改)

Fig.2Simplified geological map of Getashankou ore district (a) and geological profile of No.6 exploration line (b)

图3 圪塔山口镁铁-超镁铁质岩体宏观及显微照片(a)-地表星点状矿化超基性岩体;(b)-蛇纹石化橄榄石(正交光);(c)-镍华;(d)-硫化物组成;(e)-Ⅲ号岩体地表岩相关系;(f)-地表孔雀石化;(g)-贯入的块状硫化物;(h)-测年辉长岩样品照片;(i)-测年辉长岩显微照片(正交光).Mal-孔雀石;Sulf-硫化物;Ol-橄榄石;Serp-蛇纹石;Cpx-单斜辉石;Opx-斜方辉石;Cp-黄铜矿;Po-磁黄铁矿;Pn-镍黄铁矿;Mag-磁铁矿;Hbl-角闪石;Pl-斜长石Fig.3 The macrophotograph and microphotograph of Getashankou mafic-ultramafic intrusions(a)-the disseminated ore-bearing ultramafic intrusion on the surface; (b)-olivine altered into Serpentine (crossed polar); (c)-annabergite; (d)-the composition of sulfides (reflecting microscope); (e)-the lithofacies change of intrusion Ⅲ on the surface ; (f)-the malachite-bearing intrusion on the surface; (g)-massive sulfide; (h)-image of the gabbro for age dating; (i)-microphotograph of the gabbro for age dating (crossed polar). Mal-malachite; Sulf-sulfide; Ol-olivine; Serp-serpentine; Cpx-clinopyroxene; Opx-orthopyroxene; Cp-chalcopyrite; Po-pyrrhotite; Pn-pentlandite; Mag-magnetite; Hbl-hornblende; Pl-plagioclase

Ⅳ号岩体:地表长约420m,宽约100m,呈透镜状产出,侵位于泥盆系下统大南湖组第一亚组第七岩性段的凝灰岩、砂岩中。地表出露岩性主要为辉长岩与角闪辉长岩,岩相相对单一,矿化程度低。其矿物组成及粒度与其它岩体有所不同,加之其走向为北西向,因此我们推测其与其它岩体可能不是同一时期的产物。

为了精确测定圪塔山口含矿岩体的形成时限及矿区构造背景,进而为判别岩体成矿前景及完善东天山地区的构造演化提供年代学和地球化学制约,本文选择了Ⅰ号岩体的辉长岩(约20kg,图3h)及不同岩性的代表性样品,进行SIMS锆石U-Pb年代学及岩石主微量的研究,测年样品取样位置见图2。

Ⅰ号岩体测年辉长岩显微镜下特征如图3i所示,其矿物组成特征如下:辉石(包括斜方辉石和单斜辉石)占45%~50%,半自形-他形,总体新鲜,部分纤闪石化;角闪石:约5%,半自形-他形,多呈特征的棕色,多色性显著,包裹辉石、长石或充填于辉石、长石的晶隙之间,说明其生成较晚;斜长石:45%~50%,自形晶-他形,自形晶者形成堆晶或被辉石、角闪石包裹,反映了其结晶早于辉石,蚀变较强;半自形-他形者充填于晶体间隙,相对自形晶者而言,其蚀变程度较低,显微镜下测得其最大消光角为32.5°,对应An牌号值57.5,为拉长石;副矿物主要包括磷灰石、锆石、磁铁矿、尖晶石等。

表1圪塔山口镁铁-超镁铁质岩体主量元素(wt%)和微量元素(×10-6)分析结果

Table 1Major (wt%) and trace (×10-6) element compositions of Getashankou mafic-ultramafic intrusions

样品号GT602-127GT602-133GT803-202GT801-40GT602-85GTS602-113GTS602-120GTS602-100岩性含长角闪辉橄岩含长辉橄岩含长角闪橄辉岩角闪橄辉岩SiO239.1538.4639.0540.3939.7839.5739.5639.58TiO20.430.400.620.610.460.530.470.51Al2O36.146.026.097.166.715.695.906.16Fe2O311.7712.7113.9912.0911.0011.9211.4811.11MnO0.150.150.160.160.150.150.150.15MgO28.6628.2826.8926.4928.3928.6229.0528.30CaO3.113.193.194.063.473.143.233.46Na2O0.380.320.380.550.450.440.430.48K2O0.510.460.250.260.560.610.570.54P2O50.080.070.100.100.080.090.080.09烧失量8.238.297.956.757.957.997.748.33总量98.6198.3598.6798.6299.0098.7598.6698.71S—1.051.430.55—0.34——Fe2O3*—10.7711.2411.09—11.34——FeOT11.7212.713.8811.8410.8711.8211.3611.06Mg#0.830.810.790.810.840.830.830.83m/f4.764.353.754.285.054.714.964.97Sc11.412.715.416.412.913.213.314.5V84.782.897.611087.998.393.8105Cr20431855127117462401191821882486Co120154166124115122118124Ni14352641253716401222160713301498Cu36011311081565190358177235Zn79.778.177.083.581.476.575.776.0Rb15.515.46.866.1816.117.718.617.9Sr210185142182163132242119Y7.006.6210.910.27.708.598.429.05Zr69.862.895.787.672.484.875.296.5Nb1.331.231.501.581.791.631.381.61Cs5.565.141.931.044.104.274.986.20Ba83.893.142.455.358.583.597.757.7La2.682.713.303.352.913.342.973.56Ce6.636.538.568.686.797.627.028.52Pr0.910.851.301.300.951.101.081.20Nd4.434.116.496.034.705.285.105.49Sm1.031.051.601.521.381.381.321.52Eu0.500.430.610.550.500.530.450.55Gd1.181.121.991.821.321.281.261.35Tb0.230.210.360.330.270.240.270.29Dy1.501.382.302.101.621.601.761.80Ho0.310.280.500.410.310.320.350.38Er0.880.841.401.200.850.981.011.08Tm0.140.120.210.190.130.140.160.16Yb0.920.771.311.240.821.001.001.13Hf1.601.202.092.081.631.941.561.92Lu0.140.110.190.170.120.140.150.17Ta0.120.110.130.120.110.130.120.14Tl0.150.150.050.040.110.130.110.12Pb1.842.236.264.672.443.581.993.18Th0.410.420.400.430.370.450.420.48U0.160.210.170.190.150.170.180.20ΣREE21.4820.5130.1228.8922.6724.9623.8827.02LREE/HREE3.053.252.642.873.173.383.013.28δEu1.381.211.041.011.121.201.041.15

续表1

Continued Table 1

样品号GT602-158GT602-143GT801-48GT1002-144GT802-162GTSTC14-2GT801-113GT801-129岩性含长橄辉岩角闪辉长岩辉长岩SiO239.9738.4439.1744.2245.1450.8144.5844.02TiO20.360.460.431.010.911.220.780.86Al2O38.526.127.7210.9812.6416.5514.7214.83Fe2O311.6113.813.2912.1510.168.1910.2913.00MnO0.150.150.150.140.150.140.130.13MgO25.4227.3925.6918.1315.726.0814.2910.48CaO4.483.204.205.236.747.977.917.90Na2O0.490.360.500.792.403.361.712.34K2O0.260.460.240.120.340.550.490.32P2O50.060.080.070.170.150.180.120.13烧失量7.057.686.946.254.814.394.604.90总量98.3798.1498.4099.1999.1699.4499.6298.91FeOT11.4413.7313.0811.779.697.759.7810.34S—1.441.441.17———2.54Fe2O3*—11.0610.509.75———7.97Mg#0.810.800.790.750.760.600.730.66m/f4.293.893.792.923.201.452.731.92Sc12.312.012.718.820.530.717.318.1V79.188.783.9144148213125146Cr170418921715547582239383243Co12215814998.570.731.182.2149Ni13902807217985138459.85381776Cu5161260124820611643.44272563Zn77.581.872.582.078.987.669.778.5Rb7.8412.75.391.244.279.272.484.19Sr214151198216283541376404Y5.856.906.3616.916.222.613.015.0Zr52.071.657.213013219088.4121Nb1.231.411.053.252.743.572.032.37Cs1.873.230.800.280.260.740.290.17Ba40.058.844.875.728339680.2105La2.352.752.355.795.898.414.765.68Ce5.566.455.7614.514.219.611.213.2Pr0.740.900.772.092.062.691.601.87Nd3.304.293.819.9010.113.27.338.91Sm0.851.091.042.652.583.252.072.46Eu0.390.380.360.900.861.170.780.85Gd0.951.031.062.642.753.572.192.50Tb0.170.210.190.500.520.730.410.50Dy1.051.341.143.133.194.422.503.02Ho0.220.290.260.680.650.920.510.61Er0.650.790.681.861.802.601.481.73Tm0.100.120.110.300.280.420.220.27Yb0.650.800.651.811.802.661.411.76Hf1.161.381.303.133.134.182.373.02Lu0.100.120.090.260.280.380.210.26Ta0.090.100.100.210.190.270.140.18Tl0.070.140.040.030.030.070.020.03Pb2.475.095.309.182.544.433.626.23Th0.320.400.320.670.891.290.570.85U0.100.160.140.210.310.900.190.33ΣREE17.0720.5518.2764.0247.0146.9536.6643.62LREE/HREE3.393.383.373.083.203.173.113.09δEu1.301.081.041.041.030.981.111.03

注:Mg#=Mg2+/(Mg2++Fe2+),m/f=(Mg2++Ni2+)/(Fe3++Fe2++Mn2+), FeOT=0.9×Fe2O3,Fe2O3*表示扣除硫化物中铁转化的Fe2O3以后的Fe2O3的含量;表中所涉及到主量元素的计算及文中主量元素投图时均按扣除烧失量后的百分含量计,其中“—”表示未测试

图4 圪塔山口岩体主要氧化物与MgO相关性图Fig.4 Diagrams of oxides versus MgO of Getashankou intrusions

3 岩石地球化学

本文选取了圪塔山口矿区辉石橄榄岩相、橄榄辉石岩相和辉长岩相的不同样品,分别进行了全岩主、微量元素分析。其中,主量元素分析在中国科学院地质与地球物理研究所矿产资源研究重点实验室XRF-1500X射线荧光光谱仪上完成;微量元素分析在核工业地质研究院完成,具体岩石类型及分析结果见表1,部分样品取样位置见图2。

3.1 主量元素地球化学

圪塔山口矿区全岩SiO2含量为38.44%~50.81%,平均44.97%;Fe2O3含量为8.19%~13.99%,平均11.79%;Al2O3含量为5.69%~16.55%,平均8.87%;CaO含量为3.11%~7.97%,平均4.66%;K2O含量为0.12%~0.61%,平均0.39%;Na2O含量为0.32%~3.36%,平均0.96%;MnO含量为0.13%~0.16%,平均0.15%;TiO2含量为0.36%~1.22%,平均0.63%;MgO含量为6.08%~29.05%,平均22.99%;Mg#较高,为0.60~0.84。主要氧化物与MgO的相关性(图4)表明:除了K2O与MgO相关关系不明确以外,SiO2、TiO2、Al2O3、CaO、Na2O与MgO呈现明显的负相关关系, FeOT和MnO则呈现正相关关系,这与岩浆结晶时矿物的晶出顺序是对应的,说明结晶分异作用控制岩浆的主要化学成分变化。

全岩硅碱图表明圪塔山口镁铁-超镁铁质岩体的岩浆属亚碱性系列(图5a),由于圪塔山口岩体含有较高的MgO含量,且主要为超基性岩-基性岩,不宜用FAM图判别其岩石系列。本文利用(FeOT/MgO)-FeOT关系图对圪塔山口岩浆的性质进行简单的判别,其结果表明圪塔山口岩浆具钙碱性玄武岩向岛弧拉斑玄武岩过渡的特征(图5b)。同时矿物学的研究也证实圪塔山口岩浆为来源于地幔的钙碱性玄武质岩浆(Fengetal., 2012),因此圪塔山口岩浆性质应为以钙碱性玄武质岩浆为主的岩浆类型。据孙赫等(2007)、秦克章等(2012)研究,认为东天山地区镁铁-超镁铁质岩体岩浆具有从拉斑玄武岩向钙碱性玄武岩过渡的趋势,钙碱性岩浆源更有利于东天山地区岩浆镍铜硫化物矿床的形成。圪塔山口岩体除两个辉长岩样品m/f值小于2之外,其余样品m/f值介于2.73~5.05之间,而这一范围与东天山地区的黄山、香山、黄山东岩体(王润民等,1987)及图拉尔根、葫芦、白石泉岩体总体一致(孙赫等,2007),均为与岩浆型镍铜或铂族元素相关的类型。因此,圪塔山口镁铁-超镁铁质岩体与东天山地区众多镁铁-超镁铁质岩体镍铜硫化物矿床具有相同的、有利于形成岩浆硫化物矿床的岩浆源区特征。

3.2 稀土与微量元素地球化学

圪塔山口岩体稀土元素球粒陨石标准化配分模式为轻稀土富集的右倾式(图6a),轻、重稀土比LREE/HREE为2.64~3.39;含长角闪辉橄岩及部分含长角闪橄辉岩、含长橄辉岩δEu具正异常,可能与这3个岩相中存在斜长石的结晶有关。微量元素原始地幔标准化蛛网图表明样品富集大离子亲石元素Cs、Rb、Ba、K、Sr及高场强元素U、Pb,亏损高场强元素Th、Nb(图6b),说明岩石具岛弧亲缘性(Cox, 1980)。在Nb-Zr相关性图中,圪塔山口样品基本上位于亏损型地幔区(图7),说明成岩物质来源于亏损的地幔。

图5 圪塔山口岩体岩石SiO2-(Na2O+K2O)(a,底图据Irvine and Baragar, 1971)与(FeOT/MgO)-FeOT (b,底图据Miyashiro and Shido, 1975)化学分类图解CA-钙碱性玄武岩系列区;TH-拉斑玄武岩系列区Fig.5 The petrochemical Series classification diagram of SiO2-(Na2O+K2O) (a, after Irvine and Baragar, 1971) and (FeOT/MgO)-FeOT (b, after Miyashiro and Shido, 1975) for Getashankou intrusions CA-calc-alkaline basalt series; TH-tholeiite basalt series

图6 圪塔山口岩体球粒陨石标准化稀土元素配分图(a, 标准化值据Boynton, 1989)与原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE patterns (a, normalizing values after Boynton, 1989) and PM-normalized trace elements spider diagram (b, normalizing values after Sun and McDonough, 1989) of Getashankou intrusions

4 SIMS锆石U-Pb测年

用于SIMS锆石U-Pb年龄测定的样品委托廊坊市河北地矿局区域矿产调查研究所实验室完成锆石样品的分选工作。然后将锆石样品、锆石标样Plešovice(Slámaetal., 2008)和实验室锆石工作标样Qinghu(Lietal., 2009)粘贴在环氧树脂靶上,抛光使其暴露一半晶面。对锆石进行透、反射光显微照相以及阴极发光图像分析,以检查锆石的内部结构、选择适宜的测试点位。在真空下给样品靶镀金以备分析。

U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Lietal.(2009)。锆石标样与锆石样品以1:3比例交替测定。U-Th-Pb同位素比值与含量分别用标准锆石Plešovice(337Ma, Slámaetal., 2008)和91500(U=81×10-6, Wiedenbecketal., 1995)校正获得,以长期监测标准样品获得的标准偏差(1SD=1.5%, Lietal., 2010)和单点测试内部精度共同传递得到样品单点误差,用标准样品Qinghu(159.5Ma, Lietal., 2009)作为未知样监测数据的精确度。普通Pb的校正采用实测204Pb值,由于所测普通Pb含量非常低,可以假定其主要来源于制样过程中带入的表面Pb污染,以现代地壳平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。同位素比值与年龄误差均为1σ。采用ISOPLOT软件(Ludwig, 2001)对测试数据进行处理。

图7 圪塔山口岩体的Nb-Zr地幔类型判别图(底图据Le Roex et al., 1983)Fig.7 The Nb-Zr discrimination diagram of mantle types for Getashankou intrusions (after Le Roex et al., 1983)

测年样品中锆石呈透明的长柱状-短柱状,自形-半自形晶,部分锆石可见环带状结构,多数锆石长轴长50~200μm,部分可达250μm。本文共分析了20粒锆石样品(图8a),测试结果见表2。锆石U、Th、Pb含量分别为466×10-6~1670×10-6,404×10-6~3011×10-6和27×10-6~119×10-6,Th/U介于0.866到1.830之间,除2个测试点之外均大于1.136,表明所测样品均为典型的岩浆锆石(Daniela, 2002)。f206%最大为0.08,表明普通Pb占全部Pb的比例很小。如图8b所示,所有样品均落在谐和曲线附近,所得圪塔山口辉长岩的锆石206Pb/238U-207Pb/235U谐和年龄为282.6±1.9Ma,平均权重方差MSWD=0.15。

图8 圪塔山口辉长岩样品锆石阴极发光图像及其U-Pb谐和年龄图Fig.8 Cathodoluminescene images and concordia plot of U-Pb analysis of zircons separate from Getashankou gabbros

5 讨论

5.1 成岩年龄及意义

岩浆镍铜硫化物矿床的成岩、成矿作用基本同时发生,因此这一辉长岩年龄(282.6±1.9Ma)可以说明圪塔山口镍铜硫化物矿床的成岩成矿时代为早二叠世。

东天山地区发育大量二叠纪与镁铁-超镁铁质岩体有关的大中型岩浆型镍铜硫化物矿床,如黄山、黄山东、黄山南、图拉尔根、香山和葫芦等,其成岩成矿时代为图拉尔根I号岩体辉长岩的单颗粒锆石U-Pb年龄为300.5±3.2Ma(三金柱等,2010);黄山东黑云母橄榄苏长岩的SHRIMP锆石U-Pb年龄274±3Ma(韩宝福等,2004),铜镍硫化物矿石Re-Os等时线年龄为282±20Ma(毛景文等,2002);黄山单颗粒锆石U-Pb年龄284Ma(Qinetal., 2011);香山辉长岩和钛铁辉长岩单颗粒锆石年龄分别为285±1.2Ma和278±1.8Ma(秦克章等,2001;肖庆华等,2010;Qinetal., 2011);天宇辉长岩锆石年龄280±2Ma(Tangetal., 2011);白石泉辉长岩锆石年龄281.2±0.9Ma(毛启贵等,2006),Re-Os等时线年龄为286±14Ma(王虹等,2007);葫芦Re-Os等时线年龄为283±13Ma(陈世平等,2005)。

综上可知东天山地区镁铁-超镁铁质岩体形成时代主要集中在早二叠世,个别矿区辉长岩为晚石炭世,从岩体年龄上来看,圪塔山口岩体与已知区域上大中型镍铜矿床一致。其测年结果将东天山地区280Ma左右的幔源岩浆作用向东推进到了中蒙边界,从而大大拓展了东天山地区寻找该时代镍铜矿床的空间。同时这一年龄对邻区图拉尔根矿床的形成也具有一定的指示意义,图拉尔根I号岩体辉长岩锆石年龄300.5±3.2Ma(三金柱等,2010),明显早于区域上其它岩体的年龄,因此本文推测图拉尔根可能存在另一期岩浆活动,有待进一步查证。

图9 圪塔山口岩体同化混染判别图(原始地幔和上下地壳值据Sun and McDonough, 1989)Fig.9 Geochemical discriminant of assimilate contamination for Getashankou intrusions (data of original mantle and crust from Sun and McDonough, 1989)

5.2 地壳混染作用

研究表明不同元素在不同矿物中的相容性不同,随着结晶作用的进行,残余岩浆会逐渐富集早期结晶相中的不相容元素、亏损早期结晶相中的相容元素,即岩浆在结晶过程中元素丰度会随之变化,而总分配系数相同或者很相近的元素比值不会因结晶作用而改变。因此,总分配系数相同或者很相近、对同化混染作用又敏感的元素比值间的协变关系,可以检验同化混染作用的存在与否(Campbell and Griffiths, 1993; Mecdonaldetal., 2001; 姜常义等, 2007; Sunetal., 2008; Tangetal., 2012)。从图9中可以看出岩石的Ce/Nb-Th/Nb、Ta/Yb-Th/Yb以及TiO2/Yb-La/Yb协变关系均表现为一致的正相关,说明岩体存在明显的同化混染作用。而Nb/Th比值介于上地壳和下地壳之间,说明同化混染的物质可能来源于地壳。据Hofmann(1988)典型地幔的Ce/Pb值为20~30,平均25,地壳的Ce/Pb值小于15。由表1可知,圪塔山口岩体的Ce/Pb值介于1.09~5.59,为地壳值范围,加之Nb的强烈亏损、Zr的明显富集(图6b),均表明圪塔山口岩体存在地壳的混染作用。圪塔山口矿区围岩为泥盆系大南湖组凝灰岩、砂岩等,围岩中富含丰富的黄铁矿,相关研究表明圪塔山口岩浆侵位过程中始终处于S饱和状态(冯宏业,2014;冯宏业等,2014),可能正是围岩混染时带入的S使得岩浆体系始终保持S的饱和,从而使硫化物得以不断熔离。

5.3 可能的构造背景

关于东天山地区康古尔-黄山镍铜成矿带镁铁-超镁铁质岩体形成的大地构造背景的争论一直存在。姬金生等(1994)、李文铅等(2000)认为康古尔韧性剪切带为缝合带,黄山-镜儿泉地区超基性岩为蛇绿岩套的一部分。也有学者认为康古尔-黄山地区为弧后拉张盆地(左国朝等,1992),东天山地区铜镍矿就产生于裂谷或裂陷槽背景(冯益民等,2002)。秦克章等(2002)、Qinetal.(2003)认为东天山地区早石炭世已进入弧后裂陷伸展阶段,晚石炭世弧后盆地折返,早二叠世初结束造山,进入造山后伸展阶段,该阶段形成大量的镁铁-超镁铁质杂岩和岩浆硫化物矿床及岩浆热液型金矿床(Qinetal., 2002; 孙赫, 2009),徐兴旺等(1998)则认为碰撞造山挤压-伸展转变期是韧性剪切带型金矿和岩浆铜镍硫化物矿的大规模成矿期。

图10 圪塔山口岩体TiO2-10MnO-10P2O5图解(底图据Mullen, 1983)OIT-大洋岛弧拉斑玄武岩;OIA-大洋岛弧碱性玄武岩;MORB-洋中脊玄武岩;IAT-岛弧拉斑玄武岩;CAB-钙碱性玄武岩Fig.10 The diagram of TiO2-10MnO-10P2O5 for Getashankou intrusions (after Mullen, 1983)OIT-oceanic island tholeiite; OIA-oceanic island alkalibasalt; MORB-mid-oceanic ridge basalt; IAT-island arc tholeiite basalt; CAB-calc-alkaline basalt

对东天山地区古洋盆闭合时限及古大洋的俯冲方向的认识也不尽相同。Qinetal.(2002,2005,2009)、孙赫(2009)通过对矿床成矿时代的演化研究,认为东天山地区从中泥盆到晚石炭世处于洋壳的俯冲阶段,早二叠世处于造山后的伸展阶段。而毛启贵等(2006)、Xiaoetal.(2008)、Aoetal.(2010)则认为俯冲作用一直持续到三叠纪。关于俯冲方向的争论主要有:北天山次大洋向塔里木板块和准噶尔板块双向俯冲(姬金生等,1994)、北天山次大洋或古亚洲洋向北俯冲(Xiaoetal., 2004, 2008; 胡克兵等, 2008)、准噶尔大洋板块向南俯冲、南天山洋向北俯冲(秦克章,2000;唐冬梅等,2009b;Suetal., 2012)。中天山白石泉与东天山地区其它镁铁-超镁铁质岩体岩浆具有从拉斑玄武岩向钙碱性玄武岩过渡的岩浆演化趋势(孙赫等,2006)。本文采用TiO2-10MnO-10P2O5图来判别圪塔山口岩体产出的构造环境,结果如图10所示,样品多落于钙碱性区及岛弧拉斑玄武岩区,显示出与东天山其它岩体具有相同的构造特征。研究表明从东天山觉罗塔格构造带中镁铁-超镁铁质岩体经中天山北缘白石泉、天宇岩体到中天山地块南缘的北山地区镁铁-超镁铁质岩体,俯冲板片混染的程度由强变弱(Zhouetal., 2004; 孙赫等, 2006; Chaietal., 2008; 唐冬梅等, 2009b; 姜常义等, 2006; 苏本勋等, 2010; Suetal., 2012)。因此本文支持东天山地区准噶尔古大洋板块向南(天山)俯冲。

图11 东天山-北山一带及塔里木玄武岩成岩年龄对比图(据Qin et al., 2011补充修改)Fig.11 Compiled age data of basalts and mafic/ultramafic dikes/intrusions in Tarim Basin, eastern Tianshan and Beishan (revised after Qin et al., 2011)

东天山地区的镁铁-超镁铁质岩体的形成是否与地幔柱活动有关也是争论的热点之一。许多学者认为东天山地区存在早二叠世地幔柱活动(Zhouetal., 2004; 毛景文等, 2006; Maoetal., 2008; Pirajnoetal., 2008; 徐学义等, 2009; Qinetal., 2011; Suetal., 2011; 李文渊等, 2012),并认为东天山的镁铁岩带中镍铜矿床的形成与地幔柱活动有关,如Qinetal.(2011)通过年代学与Sr-Nd同位素研究表明二者可能具有成因上的联系,并认为二叠世碰撞后伸展背景下的地幔柱叠加作用是形成东天山和北山镁铁-超镁铁质岩带的主要原因。但同时也有学者认为东天山地区镁铁-超镁铁质岩体的形成与地幔柱无关,如邓宇峰等(2011)通过对黄山西岩体的研究,认为其岩浆源区与地幔柱活动无关。

圪塔山口岩体的主微量元素特征表明其具岛弧玄武岩的特征,而不同于李文铅等(2000)中康古尔塔格蛇绿岩的洋中脊环境,同时圪塔山口岩体的地质特征也表明其为幔源岩浆沿构造裂隙上侵的产物。因此本文认为东天山地区的镁铁-超镁铁质岩体不是缝合带蛇绿岩,而是造山后伸展阶段幔源岩浆上侵的产物。其成岩年龄282.6±1.9Ma,不仅与东天山一带其它岩体成岩时代一致,而且与北山地区镁铁-超镁铁质岩体形成时代相同。如坡北辉长岩锆石U-Pb年龄274~289Ma(姜常义等,2006;李华芹等,2006,2009),罗东岩体283~284Ma(孙赫等, 2010; Aoetal., 2010),笔架山、红石山岩体SIMS锆石U-Pb年龄依次为279Ma、280Ma(Qinetal., 2011)。说明东天山-北山地区在270~290Ma,尤其在275~285Ma间发育了大规模的岩浆活动,同时这一年龄范围也与塔里木地区玄武岩及镁铁质岩墙形成时代一致(图11)。因此,从形成时代上来看,东天山-北山地区镁铁-超镁铁质岩体的形成可能与塔里木大火成岩省岩浆活动有关。全岩Sr-Nd同位素、锆石Hf同位素和全岩主、微量地球化学数据也显示东天山-北山镁铁-超镁铁质侵入岩与塔里木火山岩有成因联系(Qinetal., 2011; Suetal., 2011)。圪塔山口镁铁-超镁铁岩体的全岩主、微量元素特征、Ni-Cu成矿特征及形成时代与东天山已知的与镁铁-超镁铁质岩体相关的镍铜硫化物矿床都非常相似,所以地幔柱活动及其作用是否影响到东天山更东段岩体及成矿有待进一步深入研究。

6 结论

(1)辉长岩锆石U-Pb测年结果表明新近发现的圪塔山口镁铁-超镁铁质岩体的形成年龄为282.6±1.9Ma,为早二叠世,与东天山-北山地区的镁铁-超镁铁质岩体形成时代一致,同时也与塔里木盆地的玄武岩与镁铁质岩墙的时代相同。

(2)圪塔山口岩体是具有亏损地幔特征的钙碱性玄武质岩浆在以结晶分异作用为主导,与壳源物质混染综合作用下的产物,岩体具有较好的镍铜矿成矿潜力。

(3)东天山镁铁-超镁铁质岩体形成于古大洋板块向南俯冲结束后的造山后伸展背景,其形成可能与地幔柱叠加作用相关。

致谢野外工作得到了新疆有色地勘局704队雷刚副总工、康峰高工,圪塔山口(头苏泉)项目部杨阳、席斌斌、马新星、杨宝新等的支持与帮助;SIMS锆石U-Pb年龄测试得到中国科学院地质与地球物理研究所李献华研究员等的支持;两位匿名审稿人对论文的修改提出了宝贵的建议;在此一并致以衷心的感谢。

Ao SJ, Xiao WJ, Han CM, Mao QG and Zhang JE. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for Late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 18(2-3): 466-478

Boynton WV. 1989. Geochemistry of the rare earth elements: Meteorite study. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114

Campbell IH and Griffiths RW. 1993. The evolution and transport in the shallow mantle beneath the East Pacific Rise: Deep Sea Drilling Project. Initial Reports, 147: 103-134

Chai FM, Zhang ZC, Mao JW, Dong LH, Zhang ZH and Wu H. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32: 218-235

Chen SP, Wang DH, Qu WJ, Chen ZH and Gao XL. 2005. Geological features and ore formation of the Hulu Cu-Ni sulfide deposit, eastern Tianshan, Xinjiang. Xinjiang Geology, 23(3): 230-233 (in Chinese with English abstract)

Cox KG. 1980. A model for flood basalt volcanism. Journal of Petrology, 21(4): 629-650

Daniela R. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1): 123-138

Deng YF, Song XY, Chen LM, Cheng SL, Zhang XL and Li J. 2011. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan. Acta Petrologica Sinica, 27(12): 3640-3652 (in Chinese with English abstract)

Ding KS, Qin KZ, Xu YX, Sun H, Xu XW, Tang DM, Mao Q and Ma YG. 2007. Typomorphic characteristics and ore-forming significance of pyrrhotite in the major Cu-Ni deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 109-119 (in Chinese with English abstract)

Feng HY, Xu YX, Qin KZ, Tang DM, Mao YJ, Xue SC and Zhang LF. 2012. Mineralogical studies of the Getashankou Ni-Cu sulfide-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China and its implications. In: 12thInternational Ni-Cu-(PGE) Symposium. Guiyang: 226-229

Feng HY. 2014. Ore-forming mechanism and ore-bearing property evaluation for Getashankou Ni-Cu deposit in eastern Tianshan, Xinjiang. Master Degree Thesis. Tangshan: Heibei United University, 1-175 (in Chinese with English abstract)

Feng HY, Xu YX, Tang DM, Qin KZ, Mao YJ, Guo HB and San JZ. 2014. Mineralogical characteristics of olivine and spinel for Getashankou Cu-Ni-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China. Geology and Exploration, 50(2): 346-359 (in Chinese with English abstract)

Feng YM, Zhu BQ, Yang JL and Zhang KC. 2002. Tectonics and evolution of the eastern Tianshan Mountains: A brief introduction to Tectonic map (1:500000) of the eastern Tianshan Mountains of Xinjiang. Xinjiang Geology, 20(4): 309-314 (in Chinese with English abstract)

Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang and geological implications. Chinese Science Bulletin, 49(22): 2324-2328 (in Chinese)

Hofmann AW. 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314

Hu KB, Yao SZ, Qu WJ, Du AD and Ao SJ. 2008. Re-Os isotopic analysis of the Hulu Cu-Ni sulfide deposit magmatic ore system, East Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 24(10): 2359-2370 (in Chinese with English abstract)

Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. J. Earth Sci., 8(5): 523-548

Ji JS, Tao HX, Zeng ZR and Yang XK. 1994. Geology and Mineralization of the Kangguertage Gold Metallogenic Belt in Eastern Tianshan. Beijing: Geological Publishing House, 1-202 (in Chinese with English abstract)

Jiang CY, Cheng SL, Ye SF, Xia MZ, Jiang HB and Dai YC. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115-126 (in Chiense with English abstract)

Jiang CY, Xia MZ, Yu X, Lu DX, Wei W and Ye SF. 2007. Liuyuan trachybasalt belt in the northeastern Tarim Plate: Products of asthenosphere mantle decompressional melting. Acta Petrologica Sinica, 23(7): 1765-1778 (in Chinese with English abstract)

Le Roex AP, Dick HJB, Erlank AJ, Reid AM, Frey FA and Hart SR. 1983. Geochemistry, mineralogy and petrogenesis of Lavas Erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 Degrees East. Journal of Petrology, 24(3): 267-318

Li HQ, Chen FW, Mei YP, Wu H, Cheng SL, Yang JQ and Dai YC. 2006. Isotopic ages of No.1 intrusive body in Pobei mafic-ultramafie belt of Xinjiang and their geological significance. Mineral Deposit, 25(4): 463-469 (in Chinese with English abstract)

Li HQ, Mei YP, Qu WJ, Cai H and Du GM. 2009. SHRIMP zircon U-Pb and Re-Os dating of No.10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance. Mineral Deposit, 28(5): 633-642 (in Chinese with English abstract)

Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107-1113

Li WQ, Dong FR and Zhou RH. 2000. Ophiolite discovered in Kangurtag region and its characteristics. Xinjiang Geology, 18(2): 121-128 (in Chinese with English abstract)

Li WY, Niu YL, Zhang ZW, Zhang MJ, Gao YB, Hu PQ, Zhang JW, Tan WJ and Jiang HB. 2012. Geodynamic setting and further exploration of magmatism-related mineralization concentrated in the Late Paleozoic in the northern Xinjiang Autonomous Region. Earth Science Frontiers, 19(4): 41-50 (in Chinese with English abstract)

Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst., 10, Q04010, doi: 10. 1029/2009GC002400

Ludwig KR. 2001. Users manual for Isoplot/Exrev. 2.49. Berkeley Geochronology Centre Special Publication. No.1a, 56

Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)

Mao JW, Pirajno F, Zhang ZH, Chai FM, Yang JM, Wu H, Chen SP, Cheng SL and Zhang CQ. 2006. Late Variscan post-collisional Cu-Ni sulfide deposits in east Tianshan and Altay in China: Principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica, 80(7): 925-942

Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng SL, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulfide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203

Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Yan Z, Yong Y and Zhang J. 2006. Zircon U-Pb age, geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract)

Mecdonald R, Rogers NW and Fitton JG. 2001. Plume lithosphere interactions in the generation of the basalts of the Kenys rift, East Africa. Journal of Petrology, 42(5): 877-900

Miyashiro A and Shido F. 1975. Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275(3): 265-277

Mullen ED. 1983. MnO/TiO2/P2O5: A miner element discriminent for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

Ni ZY. 1991. Chemical composition and petrologic significance of olivines in Huangshandong mafic-ultramafic complex in Hami, Xinjiang, China. Journal of Mineralogy and Petrology, 11(3): 40-47 (in Chinese with English abstract)

Ni ZY. 1992. Origin of mafic-ultramafic complex: Around Huangshan in Hami, Xinjiang. Northwestern Geology, 13(2): 9-17 (in Chinese with English abstract)

Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites Orogenic Andesites and Related Rocks. Chichetter: Wiley, 525-548

Pirajno F, Mao JW, Zhang ZC, Zhang ZH, and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183

Qin KZ. 2000. Paleozoic Central-Asia Orogeneses and metallogenese in northern Xinjiang. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-194 (in Chinese with English summary)

Qin KZ, Sun S, Li JL, Hao J, Xiao WJ and Wang ZH. 2011. Temporal-spatial distribution pattern of metallic deposits as criteria of tectonic environment of northern Xinjiang. In: Proceedings of China Post-Doctor Symposium (Solid Earth Sciences Volume). Beijing: Science Press, 540-545 (in Chinese with English abstract)

Qin KZ, Sun S, Li JL, Fang TH, Wang SL and Liu W. 2002. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance. Resource Geology, 52(4): 291-300

Qin KZ, Fang TH, Wang SL, Zhu BQ, Feng YM, Yu HF and Xiu QY. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English abstract)

Qin KZ, Zhang LC, Xiao WJ, Xu XW and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb, RJ, Seltmann R, Wang DW, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan: London, Natural History Museum, International Symposium of the IGCP-473 Project, IAGOD Guidebook Series 10, Urumqi, Xinjiang, China, 227-249

Qin KZ, Peng XM, San JZ, Xu XW, Fang TH, Wang SL and Yu HF. 2003. Types of major ore deposits, division of metallogenic belts in eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English abstract)

Qin KZ, Xiao WJ, Zhang LC, Xu XW, Hao J, Sun S and Li JL. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of Central Asia. In: Mao JW and Bierlein F (eds.). Mineral Deposit Research: Meeting the Global Challenge. Springer, Volume 2: 1327-1330

Qin KZ, Ding KS, Xu YX, Sun H, Xu XW, Tang DM and Mao Q. 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 1-14 (in Chinese with English abstract)

Qin KZ, Sun H, San JZ, Xu XW, Tang DM, Ding KS, Xiao QH and Su BX. 2009. Tectonic setting, geological features and evaluation of ore-bearing property for magmatic Cu-Ni deposits in eastern Tianshan, NW China. In: Proceedings of Xi’an International Ni-Cu (Pt) Deposit Symposium. Northwestern Geology, 42(Suppl.1): 95-99

Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW CHINA): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260

Qin KZ, Tang DM, Su BX, Mao YJ, Xue SC, Tian Y, Sun H, San JZ, Xiao QH and Deng G. 2012. The Tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, northern Xinjiang. Northwestern Geology, 45(4): 83-116 (in Chinese with English abstract)

San JZ, Hui WD, Qin KZ, Sun H, Xu XW, Liang GH, Wei JY, Kang F and Xiao QH. 2007. Geological characteristics of Tulargen magmatic Cu-Ni-Co deposit in eastern Xinjiang and its exploration direction. Mineral Deposits, 26(3): 307-316 (in Chinese with English abstract)

San JZ, Qin KZ, Tang ZL, Tang DM, Su BX, Sun H, Xiao QH and Liu PP. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract)

Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35

Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26(2): 207-221

Su BX, Qin KZ, Sun H and Wang H. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283-3294 (in Chinese with English abstract)

Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb age and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531

Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP and Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134-135: 41-51

Sun H, Qin KZ, Li JX, Xu XW, San JZ, Ding KS, Hui WD and Xu YX. 2006. Petrographic and geochemical characteristics in the Tulargen Cu-Ni-Co sulfide deposit, eastern Tianshan, and its tectonic background. Geology in China, 33(3): 606-617 (in Chinese with English abstract)

Sun H, Qin KZ, Xu XW, Li JX, Ding KS, Xu YX and San JZ. 2007. Petrological characteristics and copper-nickel ore-forming processes of Early Permian mafic-ultramafic intrusion belts in East Tianshan. Mineral Deposits, 26(1): 98-108 (in Chinese with English abstract)

Sun H, Qin KZ, Li JX, Tang DM, Fan X and Xiao QH. 2008. Constraint of mantle partial melting on PGE mineralization of mafic-ultramafic intrusions in eastern Tianshan: Case study on Tulargen and Xiangshan Cu-Ni deposits. Acta Petrologica Sincia, 24(5): 1079-1086 (in Chinese with English abstract)

Sun H. 2009. Ore-forming Mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in Eastern Tianshan, Xinjiang. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-262 (in Chinese with English summary)

Sun H, Qin KZ, Tang DM, Xiao QH, Su BX and Lu HF. 2010. Olivine characteristics’ implication for magmatic evolution and sulfide segregation of Luodong complex in Beishan area, Xinjiang. Sci. Technol. Rev., 28(18): 21-26 (in Chinese with English abstract)

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

Sun WD, Hu YH, Kamenetsky VS, Eggins SM, Chen M and Arculus RJ. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta, 72(14): 3542-3549

Tang DM, Qin KZ, Sun H, Qi L, Xiao QH and Su BX. 2009a. PGE geochemical characteristics of Tianyu magmatic Cu-Ni deposit: Implications for magma evolution and sulfide segregation. Acta Geologica Sinica, 83(5): 680-697 (in Chinese with English abstract)

Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009b. Lithological chronological and geochemical characteristics of Tianyu Cu-Ni deposit, East Tianshan: Constraints on source and genesis of mafic-ultramafic intrusions in East Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract)

Tang DM, Qin KZ, Li CS, Qi L, Su BX and Qu WJ. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Oregenic Belt, NW China. Lithos, 126(1-2): 84-98

Tang DM, Qin KZ, Sun H, Su BX and Xiao QH. 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in eastern Tianshan, Xinjiang, northwestern China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes. Journal of Asian Earth Science, 49: 145-160

Wang DH, Chen YC, Xu ZG and Lin WW. 2000. Cu-Ni-(PGE) sulfide metallogenic series in North Xinjiang. Mineral Deposits, 19(2): 147-155 (in Chinese with English abstract)

Wang H, Qu WJ, Li HQ and Chen SP. 2007. Dating and discussion on the rock-forming and ore-forming age of newly-discovered Cu-Ni-sulfide deposits in Hami, Xinjiang. Acta Geologica Sinica, 81(4): 526-530 (in Chinese with English abstract)

Wang RM, Liu DQ and Yin DT. 1987. The conditions of controlling metallogny of Cu, sulphide ore deposits and the orientation of finding ore Hami, Xinjiang, China. Journal of Mineralogy and Petrology, (1): 41-85 (in Chinese with English abstract)

Wang YW, Wang JB and Wang LJ. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang. Acta Petrologica Sinica, 20(4): 935-948 (in Chinese with English abstract)

Wang YW, Wang JB, Wang LJ and Long LL. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V)Ti-Fe ore district, Xinjiang. Acta Petrologica Sinica, 25(4): 888-900 (in Chinese with English abstract)

Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC and Speigel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl., 19(1): 1-23

Xiao QH, Qin KZ, Tang DM, Su BX, Sun H, San JZ, Cao MJ and Hui WD. 2010. Xiangshanxi composite Cu-Ni-Ti-Fe deposit belongs to comagmatic evolution product: Evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 26(2): 503-522 (in Chinese with English abstract)

Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic aecretionary and collisional tectonics of the eastern Tianshan (China): Implication for the continental growth of central Asia. American Journal of Science, 304(2-4): 370-395

Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117

Xu XW, Ma TL, Sun LQ, Li GS, Zhang XQ, Xu XK and Wu JX. 1998. Characteristics and dynamic significance of the ductile compressed zone in eastern Tianshan Mt. in Jiaoluotage area in Xinjiang Province. Scientia Geologica Sinica, 33(2): 147-157 (in Chinese with English abstract)

Xu XW, Ma TL, Sun LQ and Cai XP. 2003. Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China. Journal of Structural Geology, 25(11): 1901-1915

Xu XY, He SP, Wang HL and Chen JL. 2009. Geological Background Map of Mineralization in Eastern Tianshan-Beishan Area. Beijing: Geological Publishing House (in Chinese)

Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257

Zuo GC, Feng YZ, Liu CY, Li MS and Guo ZJ. 1992. Old continental crust feature of proterozoic era and crust type of Early Palaeozoic era in Gansu-Inner Mongol Beishan area and eastern Xinjiang Tianshan MTS. Acta Geologica Gansu, 1(1): 55-67 (in Chinese with English abstract)

附中文参考文献

陈世平, 王登红, 屈文俊, 陈郑辉, 高晓理. 2005. 新疆葫芦铜镍硫化物矿床的地质特征与成矿时代. 新疆地质, 23(3): 230-233

邓宇峰, 宋谢炎, 陈列锰, 程松林, 张新利, 李军. 2011. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究. 岩石学报, 27(12): 3640-3652

丁奎首, 秦克章, 许英霞, 孙赫, 徐兴旺, 唐冬梅, 毛骞, 马玉光. 2007. 东天山主要铜镍矿床中磁黄铁矿的矿物标型特征及其成矿意义. 矿床地质, 26(1): 109-119

冯宏业. 2014. 新疆东天山圪塔山口Ni-Cu矿床成矿机制及岩体含矿性评价研究. 硕士学位论文. 唐山:河北联合大学, 1-175

冯宏业, 许英霞, 唐冬梅, 秦克章, 毛亚晶, 郭海兵, 三金柱. 2014. 东天山圪塔山口铜镍矿区镁铁-超镁铁质岩体橄榄石与尖晶石矿物学特征. 地质与勘探, 50(2): 346-359

冯益民, 朱宝清, 杨军录, 张开春. 2002. 东天山大地构造及演化——1:50万东天山大地构造图简要说明. 新疆地质, 20(4): 309-314

韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(2): 2324-2328

胡克兵, 妖书振, 屈文俊, 杜安道, 敖松坚. 2008. 新疆东天山葫芦铜镍硫化物矿床Re-Os同位素物质来源示踪研究. 岩石学报, 24(10): 2359-2370

姬金生, 陶洪祥, 曾章仁, 杨兴科. 1994. 东天山康古尔塔格金矿带地质与成矿. 北京: 地质出版社

姜常义, 程松林, 叶书锋, 夏明哲, 蒋寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因. 岩石学报, 22(1): 115-126

姜常义, 夏明哲, 余旭, 逯东霞, 魏巍, 叶书锋. 2007. 塔里木板块东北部柳园粗面玄武岩带:软流圈地幔减压熔融的产物. 岩石学报, 23(7): 1765-1778

李华芹, 陈富文, 梅玉萍, 吴华, 程松林, 杨甲全, 代玉财. 2006. 新疆坡北基性-超基性岩带Ⅰ号岩体Sm-Nd和SHRIMP U-Pb同位素年龄及其地质意义. 矿床地质, 25(4): 463-469

李华芹, 梅玉萍, 屈文俊, 蔡红, 杜国民. 2009. 新疆坡北基性-超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义. 矿床地质, 28(5): 633-642

李文铅, 董富荣, 周汝洪. 2000. 新疆鄯善康古尔塔格蛇绿杂岩的发现及其特征. 新疆地质, 18(2): 121-128

李文渊, 牛耀龄, 张照伟, 张铭杰, 高永宝, 胡沛青, 张江伟, 谭文娟, 蒋寒冰. 2012. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景. 地学前缘, 19(4): 41-50

毛景文, 杨建民, 屈文俊, 杜安道, 王志良, 韩春明. 2002. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义. 矿床地质, 21(4): 323-330

毛景文, Franco P, 张作衡, 柴凤梅, 杨建民, 吴华, 陈世平, 程松林, 张长青. 2006. 天山-阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床: 主要特点及可能与地幔柱的关系. 地质学报, 80(7): 925-942

毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 闫臻, 李继亮, 雍拥, 张继恩. 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162

倪志耀. 1991. 新疆哈密黄山东镁铁-超镁铁杂岩体中橄榄石的化学成分及其岩石学意义. 矿物岩石, 11(3): 40-47

倪志耀. 1992. 新疆哈密黄山东镁铁-超镁铁杂岩体成因探讨. 西北地质, 13(2): 9-17

秦克章. 2000. 新疆北部中亚型造山与成矿作用. 博士后研究报告.北京:中国科学院地质与地球物理研究所, 1-194

秦克章, 孙枢, 李继亮,郝杰,肖文交,王志洪. 2001. 金属矿床时空分布样式作为大地构造环境的标志——以北疆为例. 见: 中国博士后学术大会论文集(固体地球科学). 北京: 科学出版社, 540-545

秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区演化与成矿地质背景研究. 新疆地质, 20(4): 302-308

秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰. 2003. 东天山主要矿床类型、成矿区带划分与成矿远景区优选. 新疆地质, 21(2): 143-150

秦克章, 丁奎首, 许英霞, 孙赫, 徐兴旺, 唐冬梅, 毛骞. 2007. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究. 矿床地质, 26(1): 1-14

秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析. 西北地质, 45(4): 83-116

三金柱, 惠卫东, 秦克章, 孙赫, 徐兴旺, 梁光河, 魏俊英, 康峰, 肖庆华. 2007. 新疆哈密图拉尔根全岩矿化岩浆铜-镍-钴矿床地质特征及找矿方向. 矿床地质, 26(3): 307-316

三金柱, 秦克章, 汤中立, 唐冬梅, 苏本勋, 孙赫, 肖庆华, 刘平平. 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义. 岩石学报, 26(10): 3027-3035

苏本勋, 秦克章, 孙赫, 王恒. 2010. 新疆北山地区旋窝岭镁铁-超镁铁岩体的年代学、岩石矿物学和地球化学研究. 岩石学报, 26(11): 3283-3294

孙赫, 秦克章, 李金祥, 徐兴旺, 三金柱, 丁奎首, 惠卫东, 许英霞. 2006. 东天山图拉尔根铜镍钴硫化物矿床岩相、岩石地球化学特征及其形成的构造背景. 中国地质, 33(3): 606-617

孙赫, 秦克章, 徐兴旺, 李金祥, 丁奎首, 三金柱. 2007. 东天山镁铁质-超镁铁质岩带岩石特征及铜镍成矿作用. 矿床地质, 26(1): 98-108

孙赫, 秦克章, 李金祥, 唐冬梅, 范新, 肖庆华. 2008. 地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束——以图拉尔根和香山铜镍矿为例. 岩石学报, 24(5): 1079-1086

孙赫. 2009. 东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-262

孙赫, 秦克章, 唐冬梅, 肖庆华, 苏本勋, 卢鸿飞. 2010. 新疆北山罗东岩体橄榄石特征对岩浆演化和硫化物熔离的指示. 科技导报, 28(18): 21-26

唐冬梅, 秦克章, 孙赫, 漆亮, 肖庆华, 苏本勋. 2009a. 东疆天宇岩浆Cu-Ni矿床的铂族元素地球化学特征及其对岩浆演化、硫化物熔离的指示. 地质学报, 83(5): 680-697

唐冬梅, 秦克章, 孙赫, 苏本勋, 肖庆华, 程松林, 李军. 2009b. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, 25(4): 817-831

王登红, 陈毓川, 徐志刚, 林文蔚. 2000. 新疆北部Cu-Ni-(PGE)硫化物矿床成矿系列探讨. 矿床地质, 19(2): 147-155

王虹, 屈文俊, 李华芹, 陈世平. 2007. 哈密地区新发现铜镍硫化物矿床成岩成矿时代的测定及讨论. 地质学报, 81(4): 526-530

王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩-黄山一带铜镍硫化物矿床成矿控矿条件及找矿方向的研究. 矿物岩石, (1): 41-85

王玉往, 王京彬, 王莉娟. 2004. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义. 岩石学报, 20(4): 935-948

王玉往, 王京彬, 王莉娟, 龙灵利. 2009. 新疆香山铜镍钛铁矿区两个镁铁-超镁铁岩系列及特征. 岩石学报, 25(4): 888-900

肖庆华, 秦克章, 唐冬梅, 苏本勋, 孙赫, 三金柱, 曹明坚, 惠卫东. 2010. 新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物——矿相学、锆石U-Pb年代学及岩石地球化学证据. 岩石学报, 26(2): 503-522

徐兴旺, 马天林, 孙立倩, 李贵书, 张学勤, 徐湘康, 吴继修. 1998. 新疆东天山觉罗塔格韧性挤压带基本特征及动力学意义. 地质科学, 33(2): 147-157

徐学义, 何世平, 王洪亮, 陈隽璐. 2009. 东天山-北山地区成矿地质背景图. 北京: 地质出版社

左国朝, 冯永忠, 刘春燕, 李茂松, 郭召杰. 1992. 甘蒙北山-东疆天山元古代古陆壳特征及其早古生代地壳类型. 甘肃地质学报, 1(1): 55-67

猜你喜欢
东天山辉长岩铁质
武夷山的岩茶上好品质竟与石材中的铁质有关
中祁连西段肃北白石头沟辉长岩年代学、地球化学特征及地质意义
攀枝花铁矿床浅色辉长岩墙的成因及其地质意义
东天山中段晚古生代剪切带叠加特征及构造控矿作用
东天山卡拉塔格矿集区奥陶—志留纪侵入岩地球化学特征及成因
赣东北樟树墩-西湾蛇绿混杂岩中辉长岩和玄武岩年代学、地球化学特征及地质意义
准噶尔北部科克森套蛇绿岩中辉长岩年代学、岩石化学特征及地质意义
甜甜的柿子
铁太多与妊娠糖尿病有关
铁太多与妊娠糖尿病有关