刘桂珍 张玉修 薛建勤 吴光大 陈琰
1. 西安石油大学地球科学与工程学院,西安 7100652. 中国科学院计算地球动力学重点实验室,北京 1000493. 中国科学院大学地球科学学院,北京 1000494. 中国石油青海油田公司勘探开发研究院,敦煌 7362021.
柴达木盆地西部基底分布有大量的有花岗岩类岩石。通过对柴达木盆地西部昆北断阶带钻遇的基底花岗岩样品开展详细的岩石学、锆石激光探针等离子体质谱U-Pb同位素年代学及岩石地球化学研究表明,锆石U-Pb同位素年龄为467~450Ma,显示基底花岗岩的结晶年龄为中-晚奥陶世,属于加里东期岩浆侵入旋回。详细的岩石地球化学分析表明,昆北断阶带基底花岗岩属过铝高钾钙碱性系列,其稀土元素配分模式为具有Eu负异常的轻稀土元素富集型,昆北断阶带中南部基底花岗岩属上地壳物质熔融,同碰撞环境下形成的花岗岩。综合区域上的研究成果,昆北断阶带及其以西地区存在中奥陶世-早志留世的加里东期构造-岩浆事件,这对探讨柴达木盆地西部基底花岗岩成因类型及岩浆演化具有重要的意义。
花岗岩;锆石LA-ICPMS定年;加里东期; 基底;昆北断阶带;柴达木盆地
柴达木盆地是青藏高原内部最大的、沉积巨厚的山间盆地(青海省地质矿产局, 1991; Yinetal., 2008a; 陈宣华等, 2010)。地貌上,柴达木盆地周缘分别被阿尔金山、祁连山和东昆仑山所围限。构造上,柴达木盆地西北边界是左行走滑的阿尔金断裂(Meyeretal., 1998; Cowgilletal., 2004a, b; Cowgill, 2007),东北边界是祁连山-南山逆冲断裂带(Burchfieletal., 1989; Tapponnieretal., 1990; Yinetal., 2007, 2008a, b),南界为东昆仑及其西部的祁漫塔格逆冲断裂带(Tapponnieretal., 1990; Jolivetetal., 2003; Yinetal., 2008a, b; 图1a)。
图1 青藏高原构造格架(a,据Zhang et al., 2004修改)和昆北断阶带基底构造图(b,据陈国民等,2011修改)Fig.1 Sketch tectonic map of Tibetan Plateau (a, after Zhang et al., 2004) and basement sketch structure map of the north Kunlun faults zone, western Qaidam Basin (b, after Chen et al., 2011)
柴达木盆地西部昆北断阶带位于祁漫塔格山前,基底为浅变质岩和花岗岩类(青海省地质矿产局, 1991; 图1b)。目前,对祁漫塔格地区侵入岩地球化学和年代学的研究比较多,而对处于覆盖区的昆北断阶带基底侵入岩研究比较少,更缺乏同位素年代学和地球化学约束。近年来,随着昆北断阶带基岩获得油气突破,油气地质研究和石油钻探为深入探讨昆北断阶带基底演化创造了条件(陈国民等,2011;图2)。本文采集柴达木盆地昆北断阶带基底花岗岩钻井岩心,进行激光剥蚀等离子质谱(LA-ICPMS)锆石U-Pb同位素年代学研究,确定花岗岩结晶年龄,结合岩石地球化学特征,对比邻区露头区资料,探讨柴达木盆地西部基底构造-岩浆作用及其地质意义。
图2 昆北断阶带钻井岩性剖面及花岗岩采样位置Fig.2 The lithologic columnar sections of three drilling cores and granite sample locations from north Kunlun faults zone
东昆仑造山带西段北部的祁漫塔格与柴达木盆地一起以阿尔金南缘断裂为界与阿尔金造山带相隔,北东方向与柴达木盆地相邻,南侧以昆南断裂为界与松潘-甘孜-复理石带相接(Burchfieletal., 1989; Zhang, 2002; Zhangetal., 2014a, b; 图1a)。关于祁漫塔格地区地质构造认识和构造单元划分存在多种不同的意见(青海省地质矿产局,1991;姜春发等,1992;许志琴等,1996;李廷栋和肖序常,1996)。李荣社等(2008)以昆北断裂(东昆仑逆冲断裂系)、昆中断裂(左行走滑的昆仑断裂)断裂为界将其划分为北昆仑(北祁漫塔格)早古生代岩浆弧带、中昆仑微陆块(早古生代复合岩浆弧带)和南昆仑早古生代增生楔杂岩带。
柴达木盆地基底包括前震旦纪结晶基底和震旦纪-三叠纪未变质-浅变质基底两部分(翟光明等,2002)。盆地基底中西部包含有浅变质的元古界稳定型沉积建造及加里东期、海西期与印支期侵入岩(陈宣华等,2011)。柴达木盆地内部构造具有明显的三分特点,根据地质构造发育的差异性,柴达木盆地具有南北分带、东西分块的基本构造格架,可以划分为以下3个一级构造单元:北部断块带、西部坳陷区和东部坳陷区三个单元,昆北断阶带是西部坳陷中的一个二级构造单元(陈宣华等,2010;陈国民等,2011;图1b)。
昆北断阶带北西西向延伸呈带状展布,以祁漫塔格北缘逆冲断裂(东昆仑逆冲断层系北缘断裂)与北祁漫塔格相邻,逆冲断层系主要由一系列北倾、向南仰冲的逆冲断层组成(陈宣华等,2010;图1b)。昆北断阶带基底的上覆地层为古新统和始新统碎屑岩沉积地层(青海省地质调查院,2004*青海省地质调查院. 2004. 1:25万库朗米其提幅区域地质调查报告(内部报告, 未出版). 1-412)。在研究区,钻井与地震反射资料显示上新世以来控制油砂山-尕斯库勒盆-山系统的隐伏花土沟断裂,其作用的前锋向南扩展,在祁漫塔格内部形成向南仰冲的祁漫塔格逆冲断层和相应的小型逆冲断层,将元古代片麻岩和古生代花岗岩推覆到奥陶纪、石炭纪和古近纪地层之上,并将昆北断阶带基底划分为若干次级构造单元(陈宣华等,2010;陈国民等,2011;图1b)。本文主要研究昆北断阶带中南部由钻井钻遇的基底花岗岩,进行同位素年代学和岩石地球化学研究,探讨柴达木盆地昆北断阶带基底构造-岩浆活动(图1b、图2)。
样品采集于Qie6、Qie7和Qie603等3口钻井钻遇的基底花岗岩(图1b、图2),进行同位素年代学与岩石地球化学分析。在钻井取样段花岗岩多具有不同程度油气显示,并发育不同期次构造裂缝,花岗岩有轻微蚀变,影响了花岗岩的新鲜程度(图2、图3)。
图3 昆北断阶带基底花岗岩特征(a) Qie603,2104m,花岗岩岩心;(b) Qie7,2182m,花岗岩岩心;(c、d) Qie603,2104.6m,花岗岩显微特征,Q-石英,Pl-斜长石,Bt-黑云母,(c)为单偏光,(d)为正交偏光Fig.3 Characteristics of basement granites from north Kunlun faults zone (a) well core of Qie603, 2104m; (b) well core of Qie7, 2182m; (c, d) diagnostic signatures of granites from Qie603 well core, 2104.6m, Q-quartz, Pl-plagioclase, Bt-biotite, (c) and (d) with single and crossed polar respectively
在对岩心观察描述基础上,对花岗岩类进行详细岩石学、岩相学分析,选择蚀变轻的样品进行主量、微量元素分析,以及锆石LA-ICPMS U-Pb同位素年代学分析。
用于主量、微量元素分析的花岗岩样品,首先碎成小块体,用Mili-Q超净水在超声仪中清洗30ms,再用约1.0mol/L的稀盐酸浸泡2h,以除去可能有的晚期碳酸盐岩矿物和浮尘,最后再次用Mili-Q超净水清洗并烘干。在不锈钢研钵中无污染粉碎至200目以下。样品主量、微量含稀土元素分析在西北大学大陆动力学国家重点实验室完成,其中主量组分采用X荧光光谱进行(XRF),分析精度优于1%;微量与稀土元素利用SX-2型电感耦合等离子体质谱仪(ICPMS)测定,其分析方法见Gaoetal.(1999)。
用于锆石LA-ICPMS U-Pb同位素年代学分析的样品,粉碎后进行人工重砂和电磁精选,然后在双目镜下挑选锆石,锆石的阴极发光(CL)图像分析和LA-ICPMS U-Pb年龄测试在西北大学大陆动力学国家重点实验室完成。CL发光仪为加载于扫描电镜上的英国Gatan公司的Mono CL3+型阴极发光探头。LA-ICPMS分析采用Agilent 7500型ICP-MS和德国LambdaPhysik公司的ComPex102 ArF准分子激光器(工作物质ArF,波长193nm),以及MicroLas公司的GeoLas 200M光学系统联机进行,激光束斑直径为30μm,激光剥蚀样品的深度为20~40μm。实验中采用He作为剥蚀物质的载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃NIST SRM610作为标准参考物质进行仪器最佳化。采样方式为单点剥蚀,数据采集选用一个质量峰一个点的跳峰方式,每完成4~5个测点的测定,加测标样一次。在锆石样品分析15~20个点前后各测2次NIST SRM610。锆石年龄采用国际标准锆石91500作为外部标准物质,元素含量采用NIST SRM610作为外标,29Si作为内标。测试结果由Glitter(ver 4.0, Macquarie University, Griffinetal., 2008)软件计算得出,并按照Andersen的方法(Andersson, 2002),用LA-ICPMS Common Lead Correction(V. 3.15)对其进行普通铅校正,年龄计算及谐和图采用Isoplot(V.3)程序完成(Ludwig, 2003)。详细分析步骤和数据处理方法及参数见Gaoetal.(2002)和柳小明等(2002)。
昆北断阶带基底花岗岩主要为灰白色-浅肉红色,中-细粒花岗结构,块状构造。矿物粒径在0.36~6.44mm之间,成分为斜长石(20%)、钾长石(30%)、石英(25%)、黑云母(15%)、角闪石(1%)及其它(7%)(图3),副矿物主要为锆石、榍石等,偶见有钾长石似斑晶,基质为斜长石(图3b,d)。斜长石呈半自形板状或粒状晶,具有简单环带构造,钠长石双晶常见An26,为中长石;钾长石他形晶,石英它形粒状,黑云母板状、片状,为二长花岗岩(图3)。
图4 昆北断阶带基底花岗岩锆石阴极发光特征Fig.4 Zircon cathodoluminescence (CL) images of basement granites from north Kunlun faults zone (a)-sample Qie7; (b)-sample Qie6; (c)-sample Qie603
样品Qie7花岗岩中锆石主要呈短柱状或长柱状,长轴约60~200μm,振荡环带较宽(图4a)。样品Qie6花岗岩的锆石阴极发光图像显示锆石长轴约50~200μm,大小变化大,大部分呈长柱状,少数为短柱状,锆石岩浆振荡环带清晰且较宽(图4b)。样品Qie603花岗岩的锆石主要呈长柱状,长轴约60~220μm(图4c)。阴极发光图像显示几乎所有的锆石均具有较典型的岩浆振荡环带,约20%的锆石有较小的老核,显示岩浆成因锆石特征(图4)。
根据锆石阴极发光图像,选择晶形完整、颗粒较大的锆石颗粒进行锆石U-Pb同位素组成分析,分析结果见表1。样品Qie7、Qie6和Qie603花岗岩锆石的Th/U比值变化范围于0.35~1.00(表1),均远大于0.10,表明所测锆石具有岩浆成因的特点(Rubatto and Gebbauer, 2000; Belousovaetal., 2002; Molleretal., 2003)。
分析Qie7样品24个测点,剔除1个缺少207Pb/206Pb比值的测点(Qie7-4),另有7个测点(Qie7-1,Qie7-3,Qie7-5,Qie7-15,Qie7-16,Qie7-17,Qie7-24)不谐和(表1)。一个核部测点的谐和年龄为521±9Ma,其余15个测点形成一个年龄集中区,206Pb/238U加权平均年龄为467±4Ma(n=15,MSWD=0.26;图5a,a′;表1)。
样品Qie6分析24个测点,其中有3个测点(Qie6-10,Qie6-15,Qie6-20)不谐和(表1),其余所有的测点均分布在谐和线附近,且集中分布(图5b,b′)。计算得到206Pb/238U加权平均年龄为451±3Ma(n=21,MSWD=0.15;图5b,b′;表1)。
样品Qie603分析24个测点(表1),所有测点均分布在谐和线附近,并集中分布,计算得到206Pb/238U加权平均年龄为450±2Ma(n=24,MSWD=0.54;图5c,c′;表1)。
综上所述,昆北断阶带基底3件花岗岩样品Qie7、Qie6、Qie603的锆石加权平均年龄分别为467±4Ma、451±3Ma和450±2Ma(图5a-c′;表1)。
昆北断阶带中南部基底花岗岩类主量组分中,SiO2含量68.47%~71.24%,属于酸性岩。K2O含量3.66%~4.19%,Na2O含量3.01%~3.75%,K2O含量大于Na2O含量,CaO含量1.28%~1.6%,岩石总体显示高钾低钙特点;Fe2O3、FeO含量偏高,FeOT/(FeOT+MgO)在0.80~0.87间,Al2O3含量12.83%~14.55%(表2)。A/CNK=1.4~1.8,平均1.6,δ=1.7~2.5,属于钙碱性岩(<3.3)。在K2O-SiO2图上,属高钾钙碱性系列(图6a; Leetal., 1989),SiO2-AR图解上,属于钙碱性系列(图6b; Wright, 1969)。在A/NK-A/CNK图解上,花岗岩属于过铝质岩石系列(图6c; Maniar and Piccoli, 1989)。
图5 昆北断阶带基底花岗岩锆石U-Pb年龄谐和图和206Pb/238U年龄谱图Fig.5 Zircon U-Pb concordia diagrams and 206Pb/238U age spectrum of basement granites from north Kunlun faults zone(a-a′)-sample Qie7; (b-b′)-sample Qie6; (c-c′)-sample Qie603
图6 昆北断阶带基底花岗岩系列判别图解Fig.6 Discrimination diagrams of basement granites from north Kunlun faults zone (a) SiO2-K2O after Le Maitre et al., 1989); (b) AR-SiO2 (after Wright, 1969); (c) A/CNK-A/NK (after Maniar and Piccoli, 1989)
稀土总量(REE)大多在194×10-6~232×10-6间,轻稀土含量LREE=136×10-6~164×10-6,重稀土含量HREE=58.3×10-6~68.1×10-6,LREE/HREE比值为2.3~2.4,样品的δEu值为0.7~0.8,Eu负异常明显,中等亏损;δCe值0.9~1.1,Ce略有亏损;Eu/Sm值在0.15~0.16间(表2、图7a)。样品呈轻稀土富集的右倾型分布模式,轻重稀土元素分异明显,而重稀土内部分馏作用较弱(表2、图7a)。在不相容元素原始地幔标准化蛛网图上,强不相容元素Rb、Ba和Zr等强烈富集,Ta、Ce、Nb、Sr和Th等中等不相容元素富集中等;弱不相容元素Y 富集,样品Ni、Pb、Zn显较低丰度值(表2、图7b)。该岩体的Nb/Ta值为8.5~10.4,平均为9.5;Nd/Th值为1.7~2.2,平均为1.9。
图7 昆北断阶带基底花岗岩的稀土元素配分模式(a)和微量元素蜘蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider grams (b) of basement granites from north Kunlun faults zone (normalization values after Sun and McDonough, 1989)
昆北断阶带中南部基底3件花岗岩样品Qie7、Qie6、Qie603锆石LA-ICPMS U-Pb定年结果显示,样品加权平均年龄分为467±4Ma、451±3Ma和450±2Ma,代表该岩体的成岩年龄,岩体形成于晚奥陶世,属于加里东期构造旋回的产物。
从花岗岩类型判别图上分析,样品投入到混合区,既有I型和S型,也有A型;从岩石化学特征上,花岗岩属于过铝质岩石,基本属于S型和A型花岗岩(图8a-d; Whalenetal., 1987)。祁漫塔格区出露的花岗岩研究表明,加里东期花岗岩类主要分布于祁漫塔格山的北部地区,由北东向和北西向两组构造岩浆带组成(李荣社等,2008)。北东向构造岩浆岩带,岩体规模大、分布较广泛,相应的岩石类型依次为A型、A+S型、S+A型,总体以A型为主,局部发育少量的S型,I型极少;北西向构造岩浆岩带,岩体规模相对较小,岩石类型以I型为主(伍跃中等,2009a,b)。因此,昆北断阶带中南部基底花岗岩与区域出露的同期花岗岩具有相似性,基本上是A+S型。
图8 昆北断阶带基底花岗岩判别图(底图据Whalen et al., 1987)Fig.8 Discrimination diagrams of basement granites from north Kunlun faults zone (after Whalen et al., 1987)
花岗岩的Nb/Ta值为8.5~10.4,平均为9.5,明显低于幔源岩石(17.5±2, Hofmann, 1988; Green, 1995)。Nd/Th值为1.7~2.2,平均为1.9,略低于壳源岩石(~3)而明显有别于幔源岩石(>15)(Beaetal., 2001)。因此该岩体是由幔源基性岩浆高度结晶分异形成的可能性较小,而可能具壳源特征。
锆石CL的图像显示其具有较宽的岩浆振荡环带,说明锆石结晶时温度较高,其中微量元素扩散较快(Rubatto and Gebbauer, 2000),花岗岩的里特曼指数δ值在1.7~2.5之间,平均为2.0,属典型的钙碱性岩,总体属过铝高钾钙碱性系列(图6a-c′)。
在稀土元素球粒陨石标准化配分图上,样品轻稀土富集的右倾型分布模式,轻重稀土元素分异明显,而重稀土内部分馏作用较弱(图7a、表2)。δEu值大多在0.5~0.6间,稀土元素配分图中Eu处显“V”字型谷,Eu强亏损;δCe值0.9~1.1,铈略有亏损;Eu/Sm值0.15~0.16,(La/Yb)N大于1且小于10,其特征表明花岗岩岩浆源于地壳物质的重熔。
在不相容元素原始地幔标准化蛛网图上,样品的强不相容元素Rb、Ba和Zr等强烈富集,Ta、Ce、Nb、Sr和Th等中等不相容元素富集中等;弱不相容元素Y富集,Ni、Pb、Zn显较低丰度值(图7b、表2),这些特征显示花岗岩岩浆可能来源于地壳物质的熔融。
昆北断阶带基底花岗岩与祁漫塔格露头区加里东期的花岗岩地球化学特征类似,均属于过铝质型花岗岩,并兼具S型花岗岩特征(李荣社等,2008;伍跃中等,2009a,b)。
根据出露于柴达木盆地周缘阿尔金、祁连和东昆仑的岩浆活动,可以判断柴达木盆地基底岩浆活动主要包括前寒武纪、古生代和中生代岩浆活动(陈宣华等,2010)。与古生代火山活动相伴,东昆仑-柴达木地体发育广泛的古生代花岗岩侵入,中酸性侵入岩往往形成规模较大的岩基,侵入活动包括加里东期、海西期、印支期和燕山期(极少量)(陈世悦,2000;陈宣华等,2010;丰成友等,2012;刘彬等,2012;陈国超等,2013;郝娜娜等,2014)。侵入岩体受NW、NNW向构造控制明显,在平面上呈不规则条带状、椭圆状等。昆北断阶带发育的奥陶纪中期 (467~450Ma, 本文)花岗岩代表了加里东期柴达木盆地的基底岩系,分布与走向与区域构造线一致。
表2昆北断阶带基底花岗岩的主量组分(wt%)、微量和稀土元素(×10-6)分析结果
Table 2Major (wt%), trace and rare earth elements (×10-6) data of basement granites from north Kunlun faults zone
样品号SiO2Al2O3Fe2O3FeOTiO2CaOMgOK2ONa2OP2O5MnO烧失量总量Qie768.4712.904.473.430.511.281.384.193.750.090.121.90100.59Qie669.7214.554.003.020.551.601.803.663.010.090.111.56102.11Qie60371.2412.833.853.020.491.301.013.823.310.060.111.17101.04样品号LiBeScVCrCoNiCuZnGaGeRbSrQie727.02.569.5322.711.0159.13.102.8449.714.61.5615945.3Qie630.03.4211.535.215.690.05.077.7764.218.41.78156142.1Qie60325.71.849.5122.37.6101.22.733.0448.118.82.24143147.2样品号YZrNbCsBaLaCePrNdSmEuGdTbQie734.818311.52.2679631.862.27.6027.66.030.996.330.94Qie642.120714.35.4359937.872.48.9332.97.171.097.341.07Qie60341.921812.32.4465042.469.99.1834.16.901.087.091.03样品号DyHoErTmYbLuHfTaPbThUREELREE/HREEQie75.931.313.760.6253.980.5825.471.358.3216.43.211942.3Qie66.881.554.440.7314.540.6696.091.5015.917.95.862292.3Qie6036.561.514.290.7024.340.6466.161.1910.215.55.012322.4
昆仑构造岩浆岩带是与冈底斯可以媲美的构造岩浆岩带,其早古生代构造-岩浆事件序列与北祁连、阿尔金可以对比,属于阿尔金-祁连-东昆仑加里东期构造-岩浆活动的一部分(莫宣学等,2007)。早古生代昆仑带的构造-岩浆活动主要包括500~400Ma的铁镁质-超镁铁质岩,及形成于500~400Ma的中酸性侵入岩与火山岩。祁漫塔格地区奥陶纪的主要花岗岩类是I型(尖石山岩体,伍跃中等,2009a,b,2011;黄土泉岩体,李荣社等,2008)和S型(十字沟岩体,伍跃中等,2009a,b,2011)或I-S过渡类型(玉苏普阿勒克塔格岩体,448Ma,李荣社等,2008),含少量A型花岗岩类(巴什尔希岩体,李荣社等,2008;高晓峰等,2010),到早志留世时期在西侧的白干湖地区发育A型花岗岩(高永宝等,2009,2010;高永宝和李文渊,2011)。在库朗米其提滩间山群中发育呈夹层或似层状或透镜体的火山岩夹层,基性火山岩组合的Sm-Nd年龄为468±54Ma,地球化学性质显示为洋壳型的拉斑玄武岩系列(李荣社等,2008)。根据祁漫塔格地区各个地质时期,当新的构造岩浆岩带形成初期,岩石类型都以I型或I+S型为主,很少出现A型花岗岩,但随着时间的推移,直至构造岩浆岩带发展的末期,最终都以A型或A+S型为主的事实,说明该区构造岩浆岩带形成和活动经历了剪切扭动-张扭性-压性-压扭性-拉张或张扭性的构造应力环境(伍跃中等,2009a,b,2011)。从前人的研究表明,祁漫塔格地区是一个复合构造岩浆岩带。祁漫塔格地区花岗岩岩浆作用受北东向和北西向的两组构造交替作用的控制,说明该区呈弧形展布的构造岩浆岩带并非同一构造机制下由板块俯冲碰撞形成的岩浆弧,而是由北东向和北西向两组构造岩浆带交替作用形成的复合岩浆岩带(伍跃中等,2009a,b,2011)。昆北断阶带奥陶纪中期偏A+S型花岗岩的地球化学特征与年代学研究显示了这种特征。
(1)昆北断阶带中南部基底花岗岩锆石LA-ICPMS U-Pb年龄为467~450Ma,显示花岗岩的结晶年龄为中-晚奥陶世,属于加里东期岩浆的侵入。
(2)昆北断阶带基底花岗岩为过铝高钾钙碱性系列,其稀土元素配分模式为具有Eu负异常和Ce异常不明显的轻稀土元素富集型,总体来说,昆北断阶带中南部基底花岗岩成因属地壳物质熔融形成的同碰撞花岗岩类。
(3)综合资料认为,在昆北断阶带及以西地区存在中奥陶世-早志留世(468~430Ma)的加里东期构造-岩浆事件,可能形成于加里东期造山运动的碰撞阶段。
Andersson J, Möller C and Johansson L. 2002. Zircon geochronology of migmatites gneiss along the southern Mylonite Zone: A major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research, 114(1-2): 121-147
Bea F, Arzamastsev A, Montero P and Arzamastseva L. 2001. Anomalous alkaline rocks of Soustov Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology, 140(5): 554-566
Belousova EA, Griffin WL and Reilly SY. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
Burchfiel BC, Molnar P, Zhao ZY, Liang K, Wang SJ, Huang MM and Sutter J. 1989. Geology of the Ulugh-Muztagh area, northern Tibet. Earth and Planetary Science Letters, 94(1-2): 57-70
Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Regional Geology in Qinghai Province. Beijing: Geological Publishing House, 1-661 (in Chinese)
Chen GC, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen YX, Liu CJ, Gao JM and Wei FH. 2013. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the eastern East Kunlun Orogenic Belt and their tectonic significance. Acta Geologica Sinica, 87(10): 1525-1541 (in Chinese with English abstract)
Chen GM, Xia MQ, Wan Y, Zhang PP, Yuan JX and Gong QL. 2011. Structural characteristics and exploration prospects of North-Kunlun faults zone in Qaidam basin. Natural Gas Geoscience, 22(1): 89-96 (in Chinese with English abstract)
Chen SY, Xu FY and Peng DH. 2000. Characteristics of basement structure and their controls on hydrocarbon in Qaidam Basin. Xinjiang Petroleum Geology, 21(3): 175-179 (in Chinese with English abstract)
Chen XH, Dang YQ, Yin A and Wang LQ. 2010. Mountain-Basin Coupling and Tectonic Evolution in Mountains around Qaidam Basin. Beijing: Geological Publishing House, 1-365 (in Chinese with English abstract)
Chen XH, Yin A, George G, Li L and Jiang RB. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam Basin, northern Qinghai-Tibet Plateau. Acta Petrologica Sinica, 85(2): 157-170 (in Chinese with English abstract)
Collins WJ, Beams SD, White AJR and Chappell BM. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200
Cowgill E, Yin A, Arrowsmith JR, Feng WX and Zhang SH. 2004a. The Akato Tagh bend along the Altyn Tagh fault, Northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults. Geological Society of America Bulletin, 116(11): 1423-1442
Cowgill E, Arrowsmith JR, Yin A, Wang XF and Chen ZL. 2004b. The Akato Tagh bend along the Altyn Tagh fault, Northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system. Geological Society of America Bulletin, 116(11): 1443-1464
Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3-4): 239-255
Feng CY, Wang S, Li GC, Ma SC and Li DS. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances. Acta Petrologica Sinica, 28(2): 665-678 (in Chinese with English abstract)
Gao S, Ling WL, Qiu Y, Zhou L, Hartmann G and Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compostions of Archean metasediments from the Kongling evolution and redistribution of REE during crutal anatexis. Geochimica et Cosmochimica Acta, 63(13-14): 2071-2088
Gao S, Liu XM, Yuan HL, Harttendorf B, Gunther D and Hu SH. 2002. Determination of forty-two major and trace elements of USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandard Newsletters, 26(2): 181-196
Gao XF, Xiao PX, Xie CR, Fan LY, Guo L and Xi RG. 2010. Zircon LA-ICP-MS U-Pb dating and geological significant of Bashierxi granite in the eastern Kunlun area, China. Geological Bulletin of China, 29(7): 1001-1008 (in Chinese with English abstract)
Gao YB, Li WY and Zhang ZW. 2009. Mineralization characteristics and analysis of potential in the area of Qimantag. Acta Mineralogica Sinica, 28(1): 393-394 (in Chinese with English abstract)
Gao YB, Li WY and Tan WJ. 2010. Metallogenicl characteristics and analysis of the prospecting potential in the area of Qimantag. Northwestern Geology, 43(4): 35-43 (in Chinese with English abstract)
Gao YB and Li WY. 2011. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantag, NW China, constraints from petrology, chronology and geochemistry. Geochimica, 40: 324-336 (in Chinese with English abstract)
Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359
Griffin WL, Powell WJ, Pearson NJ and O’Reilly SY. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester P (ed.). Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40: 204-207
Hao NN, Yuan WM, Zhang AK, Cao JH, Chen XN, Feng YL and Li X. 2014. Late Silurian to Early Devonian granitoids in the Qimantage area, East Kunlun Mountains: LA-ICP-MS zircon U-Pb ages, geochemical features and geological setting. Geological Review, 60(1): 201-215 (in Chinese with English abstract)
Hofmann PF. 1988. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16(1): 543-603
Jiang CF, Yang JS, Feng BG, Zhu ZZ, Zhao M, Chai YC, Shi XD and Wang HD. 1992. Opening-Closing Tectonics of Kunlun. Beijing: Geological Publishing House, 1-207 (in Chinese with English abstract)
Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N and Wu C. 2003. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5): 1052-1075
Le MRW, Bateman P, Dudek A, Keller J, Lameyre J, Le BMJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR and Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell, 1-193
Li RS, Ji WH, Yang YC, Yu PS, Zhao ZM, Chen SJ, Men Y, Pang XP, Shi BD, Zhang WJ, Li H and Luo CY. 2008. Kunlun Mountains and Surrounding Areas Geology. Beijing: Geological Publishing House, 1-400 (in Chinese with English abstract)
Li TD and Xiao XC. 1996. Tectonic analysis: Structure and evolution of lithosphere of Qinghai-Xizang Plateau. People’s Republic of China Ministry of Geology and Mineral Resources Geological Memoirs (5), 20: 6-20 (in Chinese with English abstract)
Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J and Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract)
Liu XM, Gao S, Yuan HL, Bodo H, Detlef G, Chen L and Hu SH. 2002. Analysis of 42 major and trace elements in glass standard references materials by 193nm LA-ICPMS. Acta Petrologica Sinica, 18(3): 408-418 (in Chinese with English abstract)
Ludwig KR. 2003. ISOPLOT 3: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Centre. Special Publication, 4: 74
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643
Meyer B, Tapponnier P, Bourjot L, Metivier F, Gaudemer Y, Peltzer G, Guo SM and Chen ZT. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction and oblique, strike-slip controlled growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1-47
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract)
Moller A, O’Brien PJ, Kennedy A and Kroner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes in Mineralogy, 5: 65-82
Rubatto D and Gebbauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps. In: Cathodolumine: Scence in Geoscinence. Berlin: Springer-Verlag, 373-400
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sounders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tapponnier P, Meyer B, Avouac JP, Peltzer G, Gaudemer Y, Guo SM, Xiang HF, Yin KL, Chen ZT, Cai SH and Dai HG. 1990. Active thrusting and folding in the Qilian-Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Planetary Science Letters, 97(3-4): 382-403
Whalen JB, Currie K and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
Wright JB. 1969. A simple alkalinity ratio and its application to non-orogenic granite genesis. Geological Magazine, 106(4): 370-384
Wu YZ, Wang Z, Guo L and Tang Z. 2009a. Tectonic control for temporal and spatial variation of granitoid in southwest sector of Altyn mountains: Evidence from changes of potassium and sodium in granitoids. Acta Geotectonica et Metallogenia, 33(4): 573-587 (in Chinese with English abstract)
Wu YZ, Wang Z, Guo L and Xiao PX. 2009b. Tectonic constraint on the temporal and spatial variation of granitoid rocks in the Qimantag region, eastern Kunlun: Evidence from the changes of potassium and sodium contents. Acta Geologica Sinica, 83(7): 964-981 (in Chinese with English abstract)
Wu YZ, Qiao GB and Chen DH. 2011. A preliminary study on relationship between tectonic magmatism and mineralization in Qimantag area, eastern Kunlun Mountains. Acta Geotectonica et Metallogenia, 35(2): 232-241 (in Chinese with English abstract)
Xu ZQ, Jiang M and Yang JS. 1996. Tectonophysical process at depth for the uplift of the northern part of the Qinghai-Tibet Plateau: Illustrated by the geological and geophysical comprehension profile from Golmud to the Tanggula mountains, Qinghai Province, China. Acta Petrologica Sinica, 70(3): 195-206 (in Chinese with English abstract)
Yin A, Manning CE, Lovera O and Menola CA. 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716
Yin A, Dang YQ, Wang LC, Jiang WM, Zhou SP, Chen XH, Gehrels GE and McRivette MW. 2008a. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846
Yin A, Dang YQ, Zhang M, Chen XH and McRivette MW. 2008b. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847-876
Zhai GM, Song JG, Jin JQ, Gao WL and Xue C. 2002. Plate Tectionic Evolution and Evaluation and of Oil-basining Formation. Beijing: Publishing House of Oil Industry, 1-461 (in Chinese with English abstract)
Zhang KJ. 2002. Escape hypothesis for the North and South China collision and the tectonic evolution of the Qinling orogen, eastern Asia. Eclogae Geologicea Helvetics, 95: 237-247
Zhang KJ, Xia, BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116(9): 1202-1222
Zhang YX, Tang XC, Zhang KJ, Zeng L and Gao CL. 2014a. U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth. International Geology Review, 56(1) : 29-56
Zhang YX, Zeng L, Zhang KJ, Li ZW, Wang CS and Guo TL. 2014b. Late Palaeozoic and Early Mesozoic tectonic and palaeogeographic evolution of central China: Evidence from U-Pb and Lu-Hf isotope systematics of detrital zircons from the western Qinling region. International Geology Review, 56(3): 351-392
附中文参考文献
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义. 地质学报, 87(10): 1525-1541
陈国民, 夏敏全, 万云, 张培平, 袁建新, 巩庆林. 2011. 柴达木盆地昆北断阶带构造特征及油气前景初步评价. 天然气地球科学, 22(1): 89-96
陈世悦, 徐风银, 彭德华. 2000. 柴达木盆地基底构造特征及其控油意义. 新疆石油地质, 21(3): 175-179
陈宣华, 党玉琪, 尹安, 汪立群. 2010. 柴达木盆地及其周缘山系盆山耦合与构造演化. 北京: 地质出版社, 1-365
陈宣华, 尹安, George G, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157-170
丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义. 岩石学报, 28(2): 665-678
高晓峰, 校培喜, 谢从瑞, 范立勇, 过磊, 奚仁刚. 2010. 东昆仑阿尔克库木湖北巴什尔希花岗岩锆石LA-ICPMS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008
高永宝, 李文渊, 张照伟. 2009. 祁漫塔格地区成矿地质特征及潜力分析. 矿物学报, 28(1): 393-394
高永宝, 李文渊, 谭文娟. 2010. 祁漫塔格地区成矿地质特征及找矿潜力分析. 西北地质, 43(4): 35-43
高永宝, 李文渊. 2011. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩: 岩石学、年代学、地球化学及岩石成因. 地球化学, 40(4): 324-336
郝娜娜, 袁万明, 张爱奎, 曹建辉, 陈小宁, 冯云磊, 李希. 2014. 东昆仑祁漫塔格晚志留世-早泥盆世花岗岩: 年代学、地球化学及形成环境. 地质论评, 60(1): 201-215
姜春发, 杨径绥, 冯秉贵, 朱志直, 赵民, 柴耀楚, 施希德, 王怀达. 1992. 昆仑开合构造. 北京: 地质出版社, 1-207
李荣社, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘小平, 史秉德, 张维吉, 李行, 洛长义. 2008. 昆仑山及邻区地质. 北京: 地质出版社, 1-400
李廷栋, 肖序常. 1996. 青藏高原地体构造分析——青藏高原岩石圈结构构造和形成演化. 中华人民共和国地质矿产部专报(五), 20: 6-20
刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807
柳小明, 高山, 袁洪林, Bodo H, Detlef G, 陈亮, 胡圣红. 2002. 193nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析. 岩石学报, 18(3): 408-418
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘东成, 谵宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414
青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社, 1-661
伍跃中, 王战, 过磊, 唐卓. 2009a. 阿尔金山西南段花岗岩类的时空变化与构造作用——来自钾钠含量变化的证据. 大地构造与成矿学, 33(4): 573-587
伍跃中, 王战, 过磊, 校培喜. 2009b. 东昆仑祁漫塔格地区花岗岩类时空变化的构造控制——来自钾钠含量变化的证据. 地质学报, 83(7): 964-981
伍跃中, 乔耿彪, 陈登辉. 2011. 东昆仑祁漫塔格地区构造岩浆作用与成矿关系初步探讨. 大地构造与成矿学, 35(2): 232-241
许志琴, 姜枚, 杨经绥. 1996. 青藏高原北部隆升的深部构造物理作用: 以“格尔木-唐古拉山”地质及地球物理综合剖面为例. 地质学报, 70(3): 195-206
翟光明, 宋建国, 靳久强, 高维亮. 2002. 板块构造演化与含油气盆地形成与评价. 北京: 石油工业出版社, 1-461