郑洁,王瑞辉,寇久社
(1.陕西中医学院针灸推拿系,陕西 咸阳 712046;2.陕西中医学院第二附属医院康复针灸科,陕西 咸阳 712046)
骨关节炎(osteoarthritis,OA)是由多种因素引起的复杂性关节退行性疾病。通常认为,OA病理与软骨下骨硬化密切相关,软骨下骨硬化可导致增龄性关节退行性变。近年的研究表明,OA早期常伴有骨重塑加快引起的骨量丢失,晚期可见骨转换率降低并引起软骨下骨板致密化及软骨全部丢失。然而,OA晚期软骨下骨致密化仅见于位于软骨下骨板和钙化软骨,而位于软骨下骨板下方的松质骨骨量明显减少。动物实验发现,在不引起软骨下骨重塑加快的同时诱导软骨下骨硬化并不会使OA进一步发展。因此,OA初期的骨重塑加快及骨丢失和晚期骨重塑减慢及软骨下骨致密化均构成导致OA病理发展的重要组成部分。本文将近年来骨重塑过程在OA发生发展中作用的相关研究做一综述。
1.1 骨重塑加快 OA初期软骨下骨重塑过程加快,软骨下骨板变薄[1]。研究发现,手术诱导OA犬模型20周后,关节软骨下骨板厚度减低的同时还伴软骨破坏和蛋白聚糖合成下降[2]。OA兔模型软骨下骨也发生了类似变化,且在手术诱导OA之前人为造成软骨下骨重塑加快和骨丢失可使OA兔的软骨损伤更加严重[3]。OA初期未出现临床症状时,OA患者受累骨关节骨吸收标志物含量明显升高,提示OA软骨下骨重塑加快早于软骨受损的发生[4]。研究发现,OA中软骨下骨吸收和软骨丢失发生在病变关节的同一区域,软骨下骨磨损相应区域的软骨丢失风险远远高于无软骨下骨磨损相应区域的软骨[5]。还有学者提出,OA中软骨下骨盐沉积减少及骨量丢失仅发生在受损软骨下骨区域[6]。可见,OA初期骨重塑加快可导致关节形态和荷载传导的改变,进而增加进行性软骨丢失的风险。
1.2 骨重塑加快的原因 OA初期骨重塑加快的原因仍不明确,可能涉及多种机制,包括微损伤修复细胞信号、血管生成因子介导的血管入侵以及通过软骨下孔隙的骨-软骨交联。
1.2.1 细胞信号 OA软骨中转化生长因子-β(transforming growth factor-β,TGF-β)、胰岛素样生长因子(insulin-like growth factor,IGF)、白介素-1(interleukin-1,IL-1)、IL-6和前列腺素E2(prostaglandin E2,PGE2)等细胞因子水平明显升高,这些因子不仅是OA病理产物,同时也是骨重塑刺激因子[7]。膝OA大鼠关节Wint信号呈高表达[8]。关节反复的负载可引起软骨下骨板出现微裂隙,这些微裂隙成为骨重塑发生的起始部位,并刺激受损区骨细胞分泌核因子κB活化受体配体(receptor activator of nuclear factor κBligand,RANKL)并下调骨保护素(osteoprotegerin,OPG)表达水平,进而诱导骨吸收过程[9,10]。OA动物模型病变关节OPG:RANKL比值明显减少,与观察到的骨重塑加快相一致[3]。
1.2.2 血管入侵 骨重塑过程的加快不可避免得伴随着深层软骨血管入侵。OA患者滑液中血管内皮生长因子(Vascular endothelial growth factor,VEGF)(重要的促血管生成因子)含量显著提高[11],软骨[12]、滑膜[13]及半月板[14]均伴有血管生成。VEGF可诱导软骨细胞合成并分泌基质金属蛋白酶(matrix metalloproteinases,MMPs),加速软骨细胞外基质的降解[11]。关节软骨血管浸润为分解代谢因子进入并降解软骨提供条件。
1.2.3 骨-软骨交联 正常软骨下骨中存在很多孔隙,构成骨-软骨信号交联的通路。OA关节软骨下骨孔隙及骨吸收活动增多,导致软骨下骨板穿孔加剧[15]。矿化软骨下组织与关节软骨在生理上相互作用[16]。软骨受损和血管入侵可使这些自然形成的通道数量增多、尺寸增大,小分子由这些通道扩散,介导OA病理下的骨-软骨相互作用[17,18]。
OA晚期病理变化主要涉及四个过程,即骨转换率降低、软骨下骨硬化、软骨钙化层增厚以及骨小梁变薄[19]。OA晚期,软骨下骨侵蚀区域减少了近65%,而骨形成只减少了20%,骨形成相对增加[20]。尽管如此,如果骨矿化不完全,其机械硬度仍然低于正常骨。研究发现,骨量和骨矿化程度存在负相关关系,二者相互适应,骨量增多时将导致骨矿化程度降低[6]。成骨细胞表型改变可破坏骨矿化功能,使骨重塑加快引发的骨矿化降低进一步加剧。骨矿化改变与OA成骨细胞大量分泌TGF-β密切相关,TGF-β可促进骨矿化抑制因子Dkk相关蛋白-2(dickkopf-related protein 2,DKK2)的高表达[21]。OA患者病变关节成骨细胞可分泌含α1链的I型胶原同型三聚体,这不同于正常情况下由α1双链和α2单链构成的异源三聚体,这种异常胶原的形成可能不利于组织矿化[21,22]。
所有上述研究为认识OA发生发展的必然环节提供了线索。OA初期反复的关节负载引起骨重塑过程加快,同时伴随深层软骨血管生成及入侵。这一过程产生一些系列继发事件,如滑膜肥厚、滑膜炎症及滑膜里衬层B细胞减少等。蛋白聚糖丢失破坏了软骨的完整性,关节负载进一步增加,关节软骨下成骨过程加快以适应以上改变。以上过程最终形成一个正反馈环,使软骨退变过程不断加剧,OA进程加快。
总之,OA软骨下骨重塑过程是呈时空变化的。OA早期骨重塑增快,并伴随软骨下骨板变薄及骨模量降低。随着疾病进展,骨重塑率减慢,但骨吸收和骨形成过程的不平衡导致成骨增多。这一过程造成骨量增加,这与骨硬化及软骨钙化层增厚密切相关。但由于骨形成过程仅呈相对提高,加之成骨细胞的矿化调节能力受损,组织本身硬度并未增加。因此,早期骨重塑加快以及后期成骨与破骨平衡的变化(成骨大于破骨)这两个过程构成OA进展的必要条件,而单独骨硬化不足以构成OA进展的条件。
参考文献:
[1]Intema F,Sniekers YH,Weinans H,etal.Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis[J].J Bone Miner Res,2010,25(7):1650-1657.
[2]Sniekers,YH,Intema F,Lafeber FP,etal.A role for subchondral bone changes in the process of osteoarthritis:a micro-CT study of two canine models[J].BMC Musculoskelet Disord,2008(9):20.
[3]Bellido M,Lugo L,Roman-Blas JA,etal.Subchondral bone microstructural damage by increased remodeling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arth Res Ther,2010,12(4):R152.
[4]Bolbos RI,Zuo J,Banerjee S,etal.Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T[J].Osteoarthritis Cartilage,2008,16(10):1150-1159.
[5]Neogi T,Felson D,Niu J,etal.Cartilage loss occurs in the same subregions as subchondral bone attrition:a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study[J].Arthritis Rheum,2009,61(11):1539-1544.
[6]Cox LG,van Donkelaar CC,van Rietbergen B,etal.Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis[J].Bone,2012,50(5):1152-1161.
[7]Mansell,JP,Collins C,Bailey,AJ.Bone,not cartilage,should be the major focus in osteoarthritis[J].Nat Clin Pract Rheumatol,2007,3(6):306-307.
[8]Weng LH,Wang CJ,Ko JY,etal.Control of Dkk 1 ameliorates chondrocyte apoptosis,cartilage destruction,and subchondral bone deterioration in osteoarthritic knees[J].Arthritis Rheum,2010,62(5):1393-1402.
[9]Nakashima T,Hayashi M,Fukunaga T,etal.Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J].Nat Med,2011,17(10):1231-1234.
[10]Kennedy OD,Herman BC,Laudier DM,etal.Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte cell populations[J].Bone,2012,50(5):1115-1122.
[11]Kim KS,Choi HM,Lee YA,etal.Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis[J].Rheumatol Int,2011,31(4):543-547.
[12]Fransès RE,McWilliams DF,Mapp PI,etal.Osteochondral angiogenesis and increased protease inhibitor expression in OA[J].Osteoarthritis Cartilage,2010,18(4):563-571.
[13]Bonnet CS,Walsh DA.Osteoarthritis,angiogenesis and inflammation[J].Rheumatology (Oxford),2005,44(1):7-16.
[14]Ashraf S,Wibberley H,Mapp PI,etal.Increased vascular penetration and nerve growth in the meniscus:a potential source of pain in osteoarthritis[J].Ann Rheum Dis,2011,70(3):523-529.
[15]Botter SM,van Osch GJ,Clockaerts S,etal.Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice:an in vivo microfocal computed tomography study[J].Arthritis Rheum,2011,63(9):2690-2699.
[16]Pan J,Zhou X,Li W,etal.In situ measurement of transport between subchondral bone and articular cartilage[J].J Orthop Res,2009,27:1347-1352.
[17]Hwang J,Bae WC,Shieu W,etal.Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis[J].Arthritis Rheum,2008,58 (12):3831-3842.
[18]Pan J,Wang B,Li W,etal.Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints[J].Bone,2012,51(2):212-217.
[19]Karsdal MA,Leeming DJ,Dam EB,etal.Should subchondral bone turnover be targeted when treating osteoarthritis[J].Osteoarthritis Cartilage,2008,16(6):638-646.
[20]Kumarasinghe DD,Perilli E,Tsangari H,etal.Critical molecular regulators,histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis[J].Osteoarthritis Cartilage,2010,18(10):1337-1344.
[21]Chan TF,Couchourel D,Abed É,etal.Elevated Dickkopf 2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts[J].J Bone Miner Res,2011,26(7):1399-1410.
[22]Couchourel D,Aubry I,Delalandre A,etal.Altered mineralization of human osteoarthritic osteblasts is due to abnormal type 1 collagen production[J].Arthritis Rheum,2008,60(5):1438-1450.