王芳,周鹏,王沛坚
(成都医学院第一附属医院心血管内科,成都 610500)
我国人口结构已步入老年化,目前65岁以上的老龄人口约2亿[1]。高龄作为心脑血管疾病的独立危险因素,与冠心病、高血压、脑卒中及心脑血管疾病的发生、发展密切相关[2]。研究[2]证实,血管内皮功能障碍是上述疾病发生的关键起始环节。氧化应激已被证实是导致老龄相关血管内皮功能损害的关键因素,而补充外源性的抗氧化物质(如维生素C和维生素E等)在离体及动物实验上均取得了不错的效果[3],但临床试验的结果仍存在一定争议[4]。由于老龄相关的血管损害早期缺乏显著的临床特征,目前尚无针对性的治疗措施,因此,亟待加强相关机制研究,以建立更为有效和具有针对性的干预策略。
在血流切应力或外源性物质(如乙酰胆碱)刺激下,血管内皮细胞可释放内源性舒张因子,如一氧化氮 (nitric oxide,NO),前 列 环 素 (prostacyclin,PGI2)等,并可通过内皮钙激活性钾通道(Ca2+activated K+channels)介导超极化因子(endothelium-derived hyperpolarizing factor,EDHF),从而调节血管的舒张,保证内脏器官供血,维持器官组织正常生理功能[5],其中NO在上述内皮依赖性舒张因子中起着最为重要的作用,亦是研究最为透彻的分子。临床研究[6]表明,随着年龄的增长,内皮依赖性舒张(endothelium dependent relaxation,EDR)功能显著下降,这种现象不但出现在诸如冠状动脉、肱动脉、基底动脉等引流血管(conduit vessels)中,还出现在肠系膜动脉等阻力血管(resistance vessels)中,以上现象同时亦在大鼠、小鼠和兔等动物上得到证实[7]。无论是人体试验还是动物实验,雄性个体抑或是雌性个体,均发现衰老个体一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的表达和活性均发生显著的变化,导致内皮合成有效的NO减少,使得EDR显著受损[6,8,9]。大鼠 K+通道介导 的 EDHF 随着年 龄 的增长进行性下降,而在衰老的自发性高血压大鼠(spontanously hypertensive rats,SHR)动 脉,EDHF基本消失,血管舒张完全由NO所介导[10]。老龄人中尿液排放的PGI2稳定代谢产物-6-酮-前列腺素 F1α(6-keto-PGF1α)显著下降,而类似的研究在雄性动物实验中也得到证实。但有研究[11]却发现在老龄Wistar大鼠的胸主动脉中PGI2的含量显著上升,这种现象可能与老龄可导致内皮中环氧合酶-2的表达上调和为了补偿与衰老相关的NO所介导的舒张反应下降有关。乙酰胆碱诱导的EDR随着年龄的增长显著下降,该现象独立于血管结构的改变,提示在血管出现显著重构前,血管功能已发生显著变化[7]。但硝酸甘油或硝普钠等诱导的血管非内皮依赖性舒张功能 (endothelium independent relaxation,EIR)随着年龄的增长并未发生明显的变化,这在大多数实验中得到证实[2,7]。除了舒张因子外,血管内皮还分泌收缩因子,如内皮素-1(endothelin-1,ET-1)和 血 管 紧 张 素 II(angiotensin II,Ang II)等共同调节血管的张力。衰老个体血管内皮不但分泌舒张因子减少,还表现为收缩因子分泌增加,血管对收缩性血管活性物质的反应性增高[12]。
线粒体是活性氧产生的主要来源,而还原型烟酰胺腺嘌呤二核苷酸(NADPH)氧化酶则是血管内介导生成活性氧簇(reactive oxidative species,ROS)的主要酶[13],导致衰老个体氧化应激水平显著升高。随着年龄的增长,NADPH氧化酶活性增高和线粒体功能异常,导致线粒体ROS,主要是H2O2的产生增加,而机体清除ROS的酶功能下降[13]过量生成的ROS可导致线粒体DNA损害,破坏线粒体结构与功能,进一步促使ROS的生成,形成恶性循环。在血管系统中,内皮是ROS产生的重要场所,而由于ROS的产生增多使合成NO的辅基-四氢生物蝶呤(BH4)的水平下降,eNOS脱偶联(eNOS uncoupling)[14]。eNOS脱偶联时,内皮中合成的NO快速与超氧阴离子结合生成具有极强氧化活性的硝基化产物,一方面使可供利用的NO减少,还可使线粒体MnSOD和BH4的水平下降,进一步损伤内皮导致血管壁硬化、顺应性下降以及血管内稳态失衡,从而导致血管内皮功能与结构的损害,促使动脉粥样硬化的发生与发展[15]。
衰老使氧化应激水平的升高是导致老龄个体血管内皮功能障碍的关键机制。为此,多年来针对氧化应激环节进行干预防治老龄相关的血管损害一直是相关领域的研究热点。动物实验中,长期给予C57BL/6J小鼠和ApoE敲除小鼠维生素C(1%/kg)可显著增加BH4的水平和eNOS的活性,但长期给予维生素E(2 000U/kg)却没有类似的效应[16]。人体研究中,富含维生素C的地中海饮食(mediterranean diet)可改善老龄人的血管功能,但直接血管给予维生素C或口服维生素C却不能显著改善老年人的血管功能[17]。长期高剂量摄入维生素C可显著改善健康老年人的下肢血流[18],但大规模的随机对照临床研究却未获得预期效果,并且长期大量摄入外源性的抗氧化剂在临床试验中发现可能增加心衰发生的风险[4,19],其研究结论仍存在一定争议。
外源性补充抗氧化剂未能在临床上取得预期效果,而实际上随着年龄的增长体内氧化/抗氧化系统失衡导致ROS的生成增加。近年来研究者们反思,干预内源性靶点从而增强机体内源性的抗氧化应激能力是否具有较好的作用。研究发现体内一些分子,如核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)[20]、解 偶 联 蛋 白 2(uncoupling protein 2,UCP2)[21]、腺苷酸活化蛋白激酶(adenosine 5'-monophosphate-activated protein kinase,AMPK)[22]、过 氧 化 物 酶 增 殖 物 受 体(peroxisome proliferators-activated receptors,PPARs)[23]和Klotho基因等对衰老相关的氧化应激有较好的调控作用[24],可能为潜在的内源性干预靶点。
Nrf2信号通路是体内经典的抗氧化应激通路。研究发现,Nrf2对保证血管内皮的完整性具有重要意义,衰老个体的血管内皮细胞Nrf2功能下降与内皮功能障碍有紧密联系[20]。Nrf2可被ROS激活,是机体的一种防御性反应。正常状态下,Nrf2与Kelch样环氧氯丙烷相关蛋白-1(Kelch-like ECH-associated protein 1,Keap1)相结合,处于非解离状态,而当机体氧化应激水平升高时,Nrf2与Keap1解离,转位 (translocation)至细胞核,与抗氧化反应元件(antioxidant response element,ARE)相结合后促进细胞内抗氧化应激分子如血红素氧合酶1(heme oxygenase 1,HO-1)、超 氧 化 物 歧 化 酶(superoxide dismutase,SOD)、过氧化氢酶 (catalase,CAT)等的转录和表达,从而提高机体清除体内氧自由基的能力[25]。Nrf2是PERK的底物,PERK磷酸化通过促进Nrf2/Keap1的解离,从而抵抗内质网应激导致的血管内皮细胞损害[26]。研究[25]提示,Nrf2的诱导剂通过修复内皮细胞的氧化还原稳态对老龄相关的心脑血管疾病如脑卒中、心血管疾病等具有良好的应用前景。
存在于线粒体膜上的UCP2可通过降低线粒体膜电位,减少线粒体活性氧的生成,减轻氧化应激损伤,从而延长寿命[21]。在果蝇中过表达UCP2可以促进线粒体呼吸,尤其是显著增加4期呼吸,降低ADP/O比值,使脂质氧化为CO2,从而降低ROS的生成,延长果蝇的寿命[27]。根据UCP2对线粒体ROS生成的调节作用,UCP2敲除可促进动脉粥样硬化斑块的形成[28],加重高盐介导的血管内皮功能损害,但UCP2敲除对非内皮依赖性舒张功能无显著影响[29]。而在高糖介导的血管损害中,敲除UCP2显著加重高糖介导的氧化应激水平升高对血管内皮的损害,过表达UCP2可防止高糖介导的血管内皮功能损害[30]。一些膳食因素如姜黄素,可通过上调UCP2改善老龄小鼠与老龄大鼠脑血管内皮功能的障碍[2]。
AMPK是与能量代谢密切相关的分子。近年来研究[22]发现,AMPK还与氧化应激有密切联系,对衰老的调控有其完整的信号网络。AMPK可通过激活FoxO/DAF-16,Nrf2/SKN-1和SIRT1信号通路,增强细胞对氧化应激的抵抗,还可通过抑制NF-κB来抑制炎症反应[22]。AMPK信号的活性在衰老过程中显著下降,导致自噬的下降,氧化应激、内质网应激、炎症水平的上升,同时促进了脂肪的沉积,使血糖上升,而上调AMPK的活性可延长寿命[22]。激活 AMPK可能通过EDHF的途径(非NO,非PGI2依赖)减轻老龄相关的血管内皮功能障碍[31]。阿 司 匹 林[32]、银 杏 叶 提 取 物[33]和 小 檗碱[34]等通过激活AMPK通路保护内皮。
PPARs也是与能量代谢密切相关的分子,包括PPARα、PPARδ/β、PPARγ3 种 亚 型[23]。PPARs不但与能量代谢有关,还与氧化应激和炎症等存在联系。在衰老过程中,氧化应激水平的升高可能与PPARα、PPARγ的表达和转录水平的下降有关[23]。热量限制(carloric restriction)的抗氧化效应可拮抗衰老对PPARs表达和转录水平的影响[35]。而在血管保护方面,PPARs可能通过防止能量代谢的损害,减轻氧化应激、炎症水平,改善胰岛素抵抗等防治动脉粥样硬化的发生与发展[36]。研究[37,38]表明,PPARs的激动剂如罗格列酮、吡格列酮等可通过NO依赖的途径改善EDR,提示PPARs也是拮抗衰老相关的EDR损害的重要靶点。
Klotho基因是由Kuro等在1997年研究自发性高血压时发现的。研究[39]证实,Klotho基因敲除(Klotho-/-)小鼠表现出与人类类似的衰老表现,包括寿命缩短、动脉硬化、皮肤肌肉萎缩、认知障碍和骨质疏松等。Klotho过表达可增强小鼠抵抗氧化应激的能力,从而显著延长小鼠寿命,这可能与其可抑制p38信号通路有关,提示Klotho、p38与寿命之间存在密切联系[39]。与野生型小鼠比较,Klotho-/-小鼠血管内皮功能显著受损,而Klotho蛋白可促进胸主动脉及小动脉内皮NO的释放,从而保护血管内 皮[40]。 另 有 研 究[41]表 明,Klotho 可 能 通 过cAMP-PKA信号通路,下调氮氧化物的表达和减少细胞内ROS的产生,减轻AngⅡ诱导的氧化应激水平的升高对血管细胞的损害,防止细胞凋亡。
人口结构的老龄化是我国面临的重大公共卫生问题,衰老作为心脑血管疾病的重要危险因素及其与氧化应激的关系已基本明确,但其致血管损伤的分子机制仍有待进一步揭示,相关机制的阐明有利于干预靶点的确立。目前已发现内源性抗氧化应激信号分子与衰老相关血管损害存在密切的联系,但如何调控这些分子仍需进一步深入研究。
[1]Qu B,Li X,Liu J,et al.Analysis of the current situation regarding the aging rural population in china and proposed countermeasures[J].Popul Health Manag,2012,15(3):181-185.
[2]Pu Y,Zhang H,Wang P,et al.Dietary Curcumin Ameliorates Aging-Related Cerebrovascular Dysfunction through the AMPK/Uncoupling Protein 2Pathway [J]. Cellular Physiology and Biochemistry,2013,32(5):1167-1177.
[3]Manjula KR,Subramanyam MV,Devi SA.Protection Against Oxidative Stress Caused by Intermittent Cold Exposure by Combined Supplementation with Vitamin E and C in the Aging Rat Hypothalamus[J].Neurochemical Research,2013,38(4):876-885.
[4]Sesso HD,Buring JE,Christen WG,et al.Vitamins E and C in the prevention of cardiovascular disease in men:the Physicians'Health Study II randomized controlled trial[J].Jama,2008,300(18):2123-2133.
[5]Barton M.Obesity and aging:determinants of endothelial cell dysfunction and atherosclerosis[J].Pflügers Archiv-European Journal of Physiology,2010,460(5):825-837.
[6]Novella S,Dantas AP,Segarra G,et al.Aging-related endothelial dysfunction in the aorta from female senescenceaccelerated mice is associated with decreased nitric oxide synthase expression[J].Experimental Gerontology,2013,48(11):1329-1337.
[7]Brandes RP,Fleming I,Busse R.Endothelial aging[J].Cardiovascular research,2005,66(2):286-294.
[8]van den Munckhof I,Riksen N,Seeger JP,et al.Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans[J].American Journal of Physiology-Heart and Circulatory Physiology,2013,304(12):1727-1732.
[9]Higashi Y,Kihara Y,Noma K.Endothelial dysfunction and hypertension in aging[J].Hypertension Research,2012,35(11):1039-1047.
[10]Büssemaker E,Popp R,Fisslthaler B,et al.Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery [J].Hypertension,2003,42(4):562-568.
[11]Qian H,Luo N,Chi Y.Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders[J].J Aging Res,2012,2012:121390.
[12]Hausman N,Martin J,Taggart MJ,et al.Age-related changes in the contractile and passive arterial properties of murine mesenteric small arteries are altered by caveolin-1knockout[J].Journal of Cellular and Molecular Medicine,2012,16(8):1720-1730.
[13]Zarzuelo MJ,López-Sepúlveda R,Sánchez M,et al.SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta:implications for vascular aging[J].Biochemical Pharmacology,2013,85(9):1288-1296.
[14]Yang YM,Huang A,Kaley G,et al.eNOS uncoupling and endothelial dysfunction in aged vessels[J].American Journal of Physiology-Heart and Circulatory Physiology,2009,297(5):1829-1836.
[15]Tsao CW,Seshadri S,Beiser AS,et al.Relations of arterial stiffness and endothelial function to brain aging in the community[J].Neurology,2013,81(11):984-991.
[16]d'Uscio LV,Milstien S,Richardson D,et al.Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity[J].Circulation Research,2003,92(1):88-95.
[17]Roman B,Carta L,Ángel M.Effectiveness of the Mediterranean diet in the elderly[J].Clinical Interventions in Aging,2008,3(1):97.
[18]Jablonski KL,Seals DR,Eskurza I,et al.High-dose ascorbic acid infusion abolishes chronic vasoconstriction and restores resting leg blood flow in healthy older men[J].Journal of Applied Physiology,2007,103(5):1715-1721.
[19]Lonn E,Bosch J,Yusuf S,et al.Effects of long-term vitamin e supplementation on cardiovascular events and cancer:A randomized controlled trial[J].J Urol,2005,174(5):1823-1827.
[20]Valcarcel-Ares MN,Gautam T,Warrington JP,et al.Disruption of Nrf2signaling impairs angiogenic capacity of endothelial cells:implications for microvascular aging[J].The Journals of Gerontology Series A:Biological Sciences and Medical Sciences,2012,67(8):821-829.
[21]Amaral S,Mota P,Rodrigues AS,et al.Testicular aging involves mitochondrial dysfunction as well as an increase in UCP2levels and proton leak[J].FEBS Letters,2008,582(30):4191-4196.
[22]Salminen A,Kaarniranta K.AMP-activated protein kinase(AMPK)controls the aging process via an integrated signaling network[J].Ageing Research Reviews,2012,11(2):230-241.
[23]Erol A.The functions of ppars in aging and longevity[J].PPAR Res,2007,2007:39654.
[24]Negri AL.The klotho gene:agene predominantly expressed in the kidney is a fundamental regulator of aging and calcium/phosphorus metabolism[J].Journal of Nephrology,2004,18(6):654-658.
[25]Chapple SJ,Siow R,Mann GE.Crosstalk between Nrf2and the proteasome:therapeutic potential of Nrf2inducers in vascular disease and aging[J].The International Journal of Biochemistry & CellBiology,2012,44(8):1315-1320.
[26]Cullinan SB,Diehl JA.PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress[J].Journal of Biological Chemistry,2004,279(19):20108-20117.
[27]Helfand SL,Rogina B.Genetics of aging in the fruit fly,Drosophila melanogaster[J].Annual Review of Genetics,2003,37(1):329-348.
[28]Blanc J,Alves-Guerra MC,Esposito B,et al.Protective role of uncoupling protein 2in atherosclerosis[J].Circulation,2003,107(3):388-390.
[29]Ma S,Ma L,Yang D,et al.Uncoupling protein 2ablation exacerbates high-salt intake-induced vascular dysfunction[J].American Journal of Hypertension,2010,23(8):822-828.
[30]Tian XY,Wong WT,Xu A,et al.Uncoupling protein-2 protects endothelial function in diet-induced obese mice[J].Circulation Research,2012,110(9):1211-1216.
[31]Lesniewski LA,Zigler MC,Durrant JR,et al.Sustained activation of AMPK ameliorates age-associated vascular endothelial dysfunction via a nitric oxide-independent mechanism[J].Mechanisms of Ageing and Development,2012,133(5):368-371.
[32]Ou HC,Lee WJ,Wu CM,et al.Aspirin prevents resistininduced endothelial dysfunction by modulating AMPK,ROS,and Akt/eNOS signaling[J].Journal of Vascular Surgery,2012,55(4):1104-1115.
[33]Ou HC,Lee WJ,Lee IT,et al.Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells[J].Journal of Applied Physiology,2009,106(5):1674-1685.
[34]Zhang M,Wang CM,Li J,et al.Berberine protects against palmitate-induced endothelial dysfunction:Involvements of upregulation of ampk and enos and downregulation of nox4[J].Mediators Inflamm,2013,2013:260464.
[35]Sung B,Park S,Yu BP,et al.Modulation of PPAR in aging,inflammation,and calorie restriction[J].The Journals of Gerontology Series A:Biological Sciences and Medical Sciences,2004,59(10):997-1006.
[36]Duval C,Chinetti G,Trottein F,et al.The role of PPARs in atherosclerosis[J].Trends in Molecular Medicine,2002,8(9):422-430.
[37]Zhao Z,Luo Z,Wang P,et al.Rosiglitazone Restores Endothelial Dysfunction in a Rat Model of Metabolic Syndrome through PPARγ - and PPARδ-Dependent Phosphorylation of Akt and eNOS[J].PPAR Res,2011,2011:291656.
[38]Omae T,Nagaoka T,Tanano I,et al.Pioglitazone,a Peroxisome Proliferator-Activated Receptor-γ Agonist,Induces Dilation of Isolated Porcine Retinal Arterioles:Role of Nitric Oxide and Potassium Channels[J].Investigative Ophthalmology & Visual Science,2011,52(9):6749-6756.
[39]Balasubramanian P,Longo VD.Linking Klotho,Nrf2,MAP kinases and aging[J].Aging(Albany NY),2010,2(10):632.
[40]Six I,Okazaki H,Gross P,et al.Direct,Acute Effects of Klotho and FGF23on Vascular Smooth Muscle and Endothelium[J].PloS One,2014,9(4):e93423.
[41]Wang Y,Kuro-o M,Sun Z.Klotho gene delivery suppresses Nox2expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway[J].Aging Cell,2012,11(3):410-417.