■ 陈乾
在很长一段时间里,安防监控一直作为事后查证的一种手段而存在。一个监控系统最重要的部分并不是实况,而是存储的录像,这存在三个问题:一是成本,海量的录像需要占用非常多的存储资源,每一块硬盘都是一笔成本;二是效率,在海量的录像中检索可能存在的事件线索是非常耗人力而低效的;三是及时性,人们需要的是事中报警甚至事前预判,事后查证并不是安防监控的本质需求。
要做到事中报警与事前预判,离不开智能分析,只有监控系统能辨别图像中正在发生的事情,才能真正实现事中报警与事前预判。在模拟时代,图像的清晰度普遍为CIF和D1,连看得清都还困难,何谈看得懂,所以直到进入数字时代,随着720P、1080P甚至4K分辨率的IPC大规模部署,智能化才成为可能。
目前的安防监控智能化主要分为两大类:后端智能和前端智能。
后端智能是通过服务器对前端的摄像机做视频分析,提取出图像里的关键信息,一般来说分为录像分析与实况分析。录像分析侧重于事后查证,最常见的是视频浓缩和视频摘要,把录像中所有移动目标提取出来集中呈现,提高录像检索的效率。实况分析则侧重于事中报警,比如行为分析:对重要区域的禁区、拌线布防,一旦出现目标即触发报警,在监控室弹出实况图像、联动附近的球机对目标智能跟踪等;还有一种常见的实况分析是图像质量检测:检测图像是否存在模糊、被遮挡等情况,一旦出现图像异常立即产生告警,这对于目前成百上千路的监控系统,是非常便捷的一种运维手段。而最近比较流行的大数据挖掘、云计算,则是后端智能更高端的一种体现方式,使得事前预判成为可能,比如在智能楼宇中安装的摄像机,把出现的人脸信息都记录下来,通过后端大数据下的云计算,一旦发现有一个陌生人在近期频繁出入、形迹可疑,系统就会判断该目标可能存在威胁,提出报警。
前端智能是指摄像机利用富余的计算资源,对自身采集到的图像做分析,提取出关键信息。目前业界的前端智能能实现的功能与后端智能中的实况分析部分基本一致,那为什么还有存在的必要呢?一是成本,对于简单的智能分析,前端自带的智能相较于通过昂贵的后端分析服务器实现的智能,可以大大降低成本;二是及时性,如智能跟踪,后端智能需要先提取一路实况流,然后调用计算资源做分析,分析中发现目标后再联动前端球机做跟踪,这中间每一步都会有延时,对于车辆等快速移动目标,跟踪准确率就会下降,而前端智能就不存在这个问题;三是配合后端大数据挖掘、云计算等应用提供结构化数据,如人脸检测,前端直接提取出画面中的人脸及特征数据,这些信息存储下来后,可以被后端所有应用服务直接使用,而不需要每个后端应用都从原始图像中提取一次。
从前面的分析可以看出前端智能偏重于小范围、简单、及时性要求高的功能实现,而后端智能偏重于大范围、复杂计算的功能实现,前后端智能配合则是未来大数据挖掘的实现方向。既然智能化的需求及实现都很明确,而且实现的前提高清化也已经普及,那为什么还有很多的视频监控系统还只是人眼的延伸,需要靠安保人员一直盯着屏幕看实况呢?智能化普及的问题与难点在哪里?
主要问题就在准确率上。从目前智能化的推广过程中来看,智能检测的整体准确率并不高,当然准确率低的原因也分为自身算法与外在环境两个方面。
以摄像机的前端智能为例做简单分析,用户需要的往往是一台专而精的设备,在特定的场所能准确的做好特定的智能检测即可。但现在很多厂商推出的设备是大而全的智能检测,一台摄像机集成了几乎所有的前端智能功能,对于摄像机不多的富余计算资源,要想把所有的功能都做好自然是不可能的。宇视科技在去年推出了一款违停球,专注于识别并抓拍车辆违章行为,特别在违章停车识别上做到极致,产品在很多项目中投入使用后,实际应用中违停抓拍准确率高达90%,获得了用户的一致好评,正是把产品做专而精的典范。
至于外在环境原因,一是指环境的干扰,如自然天气的变化、光影的变化容易让摄像机判断出错,造成误报率与漏报率,但目前已可以通过场景自适应与场景智能学习来抵抗这种环境的干扰;另一个是指环境的不可控,如装在马路边的摄像机,监控的区域是人来车往的复杂场景,想要在这种场景中实现人脸抓拍、智能跟踪是基本不可能的。目前只有在车辆卡口应用上的智能最成熟、准确率最高,这得益于一套严格的安装标准、补光标准、判断标准。其他的智能想要达到这种高准确率,出台一套严格的标准是必不可少的,如现在的人脸检测摄像机就已对摄像机安装的高度、角度、镜头焦距都提出了要求,正是为了提高检测的准确率。
从以上两方面的分析也自然而然得出了未来智能化的发展思路:专业化的智能设备、标准化的安装建设,以提高智能的准确率,使智能不再鸡肋。当前端智能摄像机配合后端云计算做智能化大数据挖掘应用时,带来的将会是全新的智慧体验:智慧家庭、智慧园区、智慧交通、智慧城市、智慧地球。我们也会从目前的事后查证及事中报警这两阶段,进入到事前预判阶段,终结犯罪,在案发之前。