腾 文
(贵州财经大学数学与统计学院,贵州 贵阳 550025)
半群POIn,r的秩
腾 文
(贵州财经大学数学与统计学院,贵州 贵阳 550025)
设Xn={1,2,…,n}(n>3)并赋予自然序.POIn为Xn上的保序部分一一变换半群,引入一类新的POIn的子半群POIn,r,讨论了半群POIn,r的生成秩,所得结果推广了有关文献中相应的结论.
部分保序一一变换;半群;秩
设α∈POIn,r,用Dom(α)表示α的定义域,定义Dα[r]=[r]⋂Dom(α),用Dα[r]α表示α在Dα[r]下的像,用Im(α)表示α的值域.对任意的α∈POIn,r(|Im(α)|=k≤r),则由保序性易验证α有如下表示法(称为α的标准表示):
[1]Gomes GM,Howie JM.On the ranks of certain sem igroup of order-preserving transformations[J].Sem igroup Forum,1992,45(3): 272-282.
[2]Vitor H Fernandes.Themonoid ofall injective order preserving partial transformationson a finite chain[J].Sem igroup forum,2001, 62(1):178-204.
[3]SommaneeW,Sanwong J.Rank and idem potent rank of finite full transformation semigroupsw ith restricted range[J].Sem igroup Forum,2013,87(1):230-242.
[4]高荣海.单调压缩部分变换半群的秩[J].常熟理工学院学报,2013,27(2):35-38.
[5]How ie JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press,1995.
On the Rank of the Sem igroup POIn,r
TENG Wen
(School of Mathematics and Statistics,Guizhou University of Finance and Econom ics,Guiyang 550025,China)
Let Xn={1,2,…,n}(n>3)be natural order set.POInbe of all injective order-preserving partial transformation semigroup on Xn.We introduced a new class subsemigroups POIn,rof semigroup POIn.The generated rank of the sem igroup POIn,rwas characterized.The theorem is an extension of corresponding conclusions for other relevant literature.
all injective order-preserving partial transformation;semigroup;rank
O152.7
A
1008-2794(2014)02-0028-04
2013-08-12
腾文,助教,硕士,研究方向:半群代数理论,E-mail:tengwengznu@126.com.