梁炜薇,王大成,程 鸿,张明哲,张雅梅*,韦东胜,秦建春*
1吉林大学植物科学学院,长春 130062;2 汉堡大学生物学系木材科学中心,汉堡 21031
植物内生菌近年来之所以受到人们的重视是因为人们逐渐认识到它们对寄主植物重要的生态学作用及其能够产生结构新颖多变,生物活性显著的次生代谢产物的巨大潜力。现在,内生菌被认为是一类开发潜力巨大的生物资源,尤其是从中可以发现各种生物活性的天然小分子化合物[1]。人参(Panax ginseng)为五加科名贵药用植物,作为中草药已经被使用了几千年,具有抗疲劳、减肥、抗肿瘤和抗氧化等多种保健功效[2]。虽然人参化学成分和药理活性研究很多,但是关于人参内生菌次生代谢产物的相关研究还很少,值得进一步研究开发其内生菌天然产物。在长期从药用植物内共生菌次生代谢产物中寻找新颖活性化合物过程中[3-6],我们对东北地区长白山产的野生人参中分离的一株内生真菌RSQMK-9 的化学成分进行了研究,从该菌的发酵产物中分离得到14个化合物。在此,我们报道这些化合物的分离纯化和结构鉴定以及对海虾的细胞毒活性。
熔点仪为XRC-1 型显微熔点仪,温度计未校正。NMR 用BrukerAM-400 和Bruker DRX-500 型核磁共振仪测定(TMS 为内标);EI-MS:70 eV,Varian MAT 731,Varian 311A,AMD-402;ESI-MS:Finnigan Mat-Incos 50,LCQ(Finnigan)。
柱色谱填料:硅胶(青岛海洋化工厂);反相填料(Merck RP-18);凝胶填料Sephadex LH-20(Amersham Biosciences,Uppsala,Sweden);大孔树脂填料Amberlite XAD-16(Rohm & Hass,Paris,France);制备TLC 板:Silica gel 60 GF254;TLC 在254 nm 和365 nm 紫外光显色,并用10%硫酸-乙醇溶液加热显色。其余试剂均为分析纯。
本实验所用的内生真菌(编号为RSQMK-9)是从人参(Panax ginseng)根部的新鲜组织分离得到,经鉴定确定为球毛壳菌(Chaetomium globosum)。
菌株在PDA 培养基上28 ℃活化培养5 d,然后接种在液体培养基(氯化钙0.2 g,磷酸二氢钾0.1 g,氯化钾0.05 g,硫酸镁0.1 g,葡萄糖20.0 g,蛋白胨15.0g,1000 mL 水,pH7.0)。在1000 mL 的三角瓶中加入400 mL 液体培养基,在26 ℃的摇床上120 rpm 旋转震荡培养8 d,然后用于提取分离。
20 L 发酵产物经过滤后分别获得菌丝体和发酵液。菌丝在50 ℃下烘干粉碎,用丙酮做溶剂超声提取3 次,合并蒸干溶解在甲醇中,用环己烷脱脂处理后浓缩得到粗提取物3.5 g,滤液经过吸附柱(polymeric resin Amberlite XAD-16),水洗除去盐和大分子水溶性物质,之后用甲醇洗脱得到非水溶性成分,浓缩后得到5.6 g 提取物,然后将其悬浮于少量水后用石油醚和乙酸乙酯分别萃取3 次,乙酸乙酯萃取相浓缩得2.2 g 萃取物。经过TLC 对照,乙酸乙酯萃取物和菌丝部分脱脂后提取物成分基本相同,故将它们合并起来得到总提取物。提取物经粗硅胶拌样后进行硅胶层析,用二氯甲烷-甲醇系统梯度洗脱,检测合并得到5个组分(Fr.1~Fr.5),Fr.2~Fr.4 分别经过反复的硅胶柱层析、RP-18、制备HPLC、Sephadex LH-20 进行分离纯化得到化合物1~14。
海虾致死活性采用微量滴定板法,采用丰年虾(Artemiasalina)幼虫作为测试生物[7]。在室温下,直径1.8 cm,深2 cm 的每个培养孔中装入0.2 mL的人造海水,每个孔中放入人工孵化的游动的丰年虾幼体30个。将化合物用DMSO 溶解,定量加入到每个培养孔中,稀释到最终10 μg/mL 浓度。对照只加DMSO,每一处理重复三次。在室温下黑暗培养24 h 后,在显微镜下计算每个槽中死亡的海虾个数,最后用以下公式计算致死率(M)。
其中:M=24 h 后的致死率;A=24 h 后的死亡总数;B=24 h 后对照槽中的死亡总数;N=在加入药剂之前的死亡数;G=挑选用于测试的小虾总数。
化合物1 无色针状晶体(氯仿)。1H NMR(500 MHz,CDCl3)δ:3.64 (1H,m,H-3),5.56 (1H,d,J=4.2 Hz,H-6),5.38 (1H,d,J=6.0 Hz,H-7),0.62 (3H,s,H-18),0.96 (3H,s,H-19),1.03 (3H,d,J=6.4 Hz,H-21),5.19 (1H,dd,J=15.5,8.0 Hz,H-22),5.25 (1H,dd,J=15.8 Hz,H-23),0.93(3H,s,H-25),0.85 (3H,d,J=6.0 Hz,H-27),0.84(3H,d,J=6.0 Hz,H-28)。以上数据和常见的真菌代谢产物ergosterol[8]数据一致,进一步通过与麦角甾醇标准品比较确定其结构。
化合物2 黄色粉末(氯仿)。1H NMR (CDCl3,500MHz)δ:5.72 (1H,s,H-4),6.01 (1H,d,J=9.4 Hz,H-6),6.60 (1H,d,J=9.4 Hz,H-7),0.95 (3H,s,H-18),0.98 (3H,s,H-19),1.05 (3H,d,J=6.6 Hz,H-21),5.21 (1H,m,H-22),5.22 (1H,m,H-23),0.82 (3H,d,J=7.0 Hz,H-26),0.84 (3H,d,J=6.8 Hz,H-27),0.92 (3H,d,J=6.8 Hz,H-28);13C NMR (CDCl3,125 MHz)δ:34.1 (C-1),34.3(C-2),199.2 (C-3),123.1 (C-4),164.2 (C-5),124.5 (C-6),133.9 (C-7),124.6 (C-8),44.5 (C-9),36.8 (C-10),19.0 (C-11),35.6 (C-12),44.0(C-13),155.9 (C-14),25.3 (C-15),27.7 (C-16),55.8 (C-17),19.0 (C-18),16.8 (C-19),39.2 (C-20),21.2 (C-21),135.0 (C-22),132.5 (C-23),43.0 (C-24),33.2 (C-25),20.0 (C-26),19.8 (C-27),17.7 (C-28)。以上数据和文献报道一致[9],所以化合物被鉴定为ergosta-4,6,8(14),22-tetraen-3-one。
化合物3 无色针状晶体(氯仿)。1H NMR(CDCl3,500 MHz)δ:4.07 (1H,m,H-3),3.62(1H,d,J=4.8 Hz,H-6),5.35 (1H,dd,J=4.8,2.4 Hz,H-7),0.59 (3H,s,H-18),1.09 (3H,s,H-19),1.03 (3H,d,J=6.7 Hz,H-21),5.16 (1H,dd,J=15.4,8.0 Hz,H-22),5.23 (1H,dd,J=15.4,8.0 Hz,H-23),0.82 (3H,d,J=6.2 Hz,H-26),0.84(3H,d,J=6.9 Hz,H-27),0.92 (3H,d,J=6.6 Hz,H-28);13C NMR (CDCl3,125 MHz)δ:32.8 (C-1),30.4 (C-2),67.2 (C-3),39.3 (C-4),75.9 (C-5),73.1 (C-6),117.3 (C-7),143.2 (C-8),43.2 (C-9),37.0 (C-10),22.0 (C-11),38.9 (C-12),43.6(C-13),54.7 (C-14),22.9 (C-15),28.0 (C-16),55.9 (C-17),12.3 (C-18),18.4 (C-19),40.4 (C-20),19.6 (C-21),131.9 (C-22),135.3 (C-23),42.8 (C-24),33.1 (C-25),19.9 (C-26),21.1 (C-27),17.6 (C-28)。通过与文献中NMR 数据比较[9],确定化合物为cerevisterol。
化合物4 白色晶体(氯仿)。EI-MS(m/z):426[M]+,394,376,299,251,69;1H NMR (600 MHz,CDCl3)δ:3.98 (1H,m,H-3),6.35 (1H,d,J=8.4 Hz,H-6),6.54 (1H,d,J=8.4 Hz,H-7),5.48(1H,m,H-11),0.78 (3H,s,H-18),1.19 (3H,s,H-19),1.05 (3H,d,J=6.8 Hz,H-21),5.21 (1H,dd,J=15.4,8.0 Hz,H-22),5.30 (1H,dd,J=15.3,7.4 Hz,H-23),0.84 (3H,d,J=6.5 Hz,H-26),0.81(3H,d,J=6.2 Hz,H-27),0.98 (3H,d,J=6.8 Hz,H-28)。以上数据与文献报道的9(11)-dehyoergosterol peroxide 一致[8],通过进一步和标准品比较Rf值(0.49,氯仿∶丙酮=8∶1)确定化合物结构。
化合物5 白色晶体(甲醇)。EI-MS m/z 258[M]+;HR-ESI-MS m/z:259.0607 [M+H]+,calcd.for C14H11O5259.0602);1H NMR (600 MHz,DMSO-d6)δ:2.63 (3H,s,H-Me),6.37 (1H,d,J=1.70 Hz,H-4),6.71 (1H,d,J=2.20 Hz,H-3'),6.62 (1H,d,J=2.20 Hz,H-5'),7.24 (1H,d,J=1.80 Hz,H-6),11.72 (OH),10.43(2OH);13C NMR(125 MHz,DMSO-d6)δ:138.0 (C-1),108.9 (C-1'),97.2 (C-2),152.5 (C-2'),164.6 (C-3),101.5(C-3'),100.8 (C-4),158.3 (C-4'),165.4 (C-5),117.4 (C-5'),104.3(C-6),138.2 (C-6'),164.0(C-7),25.1 (C-8)。以上数据与文献报道一致[10],故鉴定化合物为alternariol。
化合物6 橘红色晶体(氯仿)。ESI-MS m/z 283[M-H]-;1H NMR (600 MHz,CDCl3)δ:12.30(1H,s,1-OH),7.61 (1H,s,H-4),7.36(1H,d,J=2.4 Hz,H-5),7.05 (1H,d,J=1.2 Hz,H-2),6.67(1H,d,J=2.4 Hz,H-7),3.97 (3H,s,6-OMe),2.43(3H,s,3-Me);13C NMR (125 MHz,CDCl3)δ:190.8(C-9),182.0(C-10),166.5(C-6),165.2 (C-8),162.5 (C-1),148.4(C-3),135.3 (C-4a),133.2(C-10a),124.5(C-2),121.3(C-4),113.7(C-9a),110.3 (C-8a),108.2 (C-5),106.8(C-7),56.1(6-OMe),22.2(2-Me)。以上数据与文献报道数据一致[11]。故鉴定化合物为physcion。
化合物7 黄色晶体(甲醇)。1H NMR (CD3OD,400 MHz)δ:10.96 (1H,br s,NH),7.92 (1H,s,H-2),8.06 (1H,dd,J=2.1,6.0 Hz,H-4),7.18(2H,m,H-5,6),7.42 (1H,dd,J=2.1,6.4 Hz,H-7);13C NMR (CD3OD,125 MHz) δ:169.2(COOH),133.2 (C-2),108.8 (C-3),121.9 (C-4),123.3 (C-5),122.3 (C-6),112.8 (C-7),127.5(C-8),138.3 (C-9)。经过和数据库antibase 以及文献中Indole-3-carboxylic acid 数据比较确定化合物为Indole-3-carboxylic acid[12]。
化合物8 白色结晶(甲醇)。1H NMR (C5D5N,500MHz)δ:4.42 (1H,m,H-2),3.02 (1H,m,H-3),6.96 (1H,s,H-6),1.29 (3H,d,J=6.4 Hz,2-CH3),1.23 (3H,d,J=6.6 Hz,3-CH3),2.39 (3H,s,4-CH3);13C NMR(C5D5N,125 MHz)δ:86.5 (C-2),44.8 (C-3),111.8 (C-4),151.0 (C-5),104.4(C-6),140.8 (C-7),139.8 (C-8),132.6 (C-9),21.1 (2-CH3),19.6 (3-CH3),12.2 (4-CH3)。以上数据与文献报道一致[13],故鉴定化合物为2,3,4-trimethyl-5,7-dihydroxy-2,3-dihydrobenzofuran。
化合物9 白色结晶(甲醇)。EI-MS m/z 136[M]+;ESI-MS m/z:137 [M+H]+;1H NMR (600 MHz,CD3OD)δ:6.74 (1H,d,J=6.8 Hz,H-3),7.19 (1H,t,J=16.0 Hz,H-4),6.58 (1H,t,J=16.0 Hz,H-5),7.51 (1H,d,J=7.0 Hz,H-6)。经过和数据库antibase 以及文献中anthranilamide 数据比较确定化合物为anthranilamide[14]。
化合物10 白色晶体(甲醇)。1H NMR (CDCl3,500 MHz)δ:6.68 (1H,d,J=7.8 Hz,H-3),7.33(1H,td,J=7.8,1.8 Hz,H-4),6.69 (1H,t,J=7.8 Hz,H-5),7.19 (1H,dd,J=7.8,1.8 Hz,H-6);13C NMR (CDCl3,125 MHz)δ:109.6 (C-1),151.1 (C-2),116.5 (C-3),135.1 (C-4),116.8 (C-5),132.1(C-6),173.7 (-COOH)。通过比较化合物和标准品anthranilic acid 在薄层色谱上的显色情况和Rf值[两种展开系统:正丁醇-醋酸-水(BAW)(4∶1∶5)上层;正己烷6 mL,乙酸乙酯3 mL,另加两滴冰醋酸]确定化合物为anthranilic acid。
化合物11 浅黄色晶体(甲醇)。ESI-MS m/z 183[M+H]+,HR-ESI-MS (m/z:183.0646 [M +H]+,calcd.for C9H11O4183.0652);1H NMR (600 MHz,CD3OD)δ:6.19 (1H,s,H-5),2.44 (3H,s,3-CH3),2.04 (3H,s,6-CH3)。以上数据和antibase中3-methylorsellinic acid (2,4-dihydroxy-3,6-dimethyl-benzoic acid)以及文献中数据一致[15]。
化合物12 无色结晶(甲醇)。ESI-MS m/z:183[M+H]+;1H NMR(DMSO-d6,600 MHz):δ3.37(2H,ddd,J=4.5,5.6,11.2 Hz),3.45 (2H,ddd,J=3.6,8.5,8.8 Hz),3.57(2H,t,J=7.6 Hz),3.60(2H,dd,J=11.0,8.8,3.6 Hz),4.08 (2H,d,J=7.0 Hz,OH),4.26 (2H,t,J=5.5 Hz,OH),4.34(2H,d,J=5.6 Hz,OH)。以上数据通过和标准品在薄层色谱上比较进一步确定mannitol。
化合物13 黄色粉末(氯仿)。ESI-MS (m/z):527[M-H]-,551[M+Na]+,1055[2M-H]-,1079[2M+Na]+,573[M+HCOO]-,1101[2M +HCOO]-;HR-ESI-MS (m/z:529.2687 [M+H]+,calcd.for C32H37N2O5529.2695);1H NMR (CDCl3,600 MHz)δ:7.03 (1H,s,H-2'),3.75 (1H,br d,J=6.0 Hz,H-3),7.47 (1H,d,J=7.6 Hz,H-4'),1.88 (1H,d,J=4.4 Hz,H-5),7.12 [1H,t(dd),J=8.4 Hz,H-5'],7.18 [1H,t(dd),J=8.4 Hz,H-6'],2.73 (1H,d,J=4.6 Hz,H-7),7.34(1H,d,J=8.0 Hz,H-7'),2.12(1H,br d,J=13.6 Hz,H-8),2.94(2H,dd,J=14.0,4.0 Hz,H-10α),2.65(1H,dd,J=14.0,7.5 Hz,H-10β),1.14(3H,d,J=4.4 Hz,H-11),1.26(3H,s,H-12),6.04(1H,dd,J=15.0,10.0 Hz,H-13),5.22 (1H,m,H-14),2.23(1H,br d,J=15.0 Hz,H-15),2.49(1H,m,H-16),0.97(3H,d,J=6.6 Hz,16-CH3),5.54(1H,d,J=9.0 Hz,H-17),1.23(3H,s,18-CH3),5.03(1H,d,J=4.4 Hz,H-19),6.49(1H,d,J=16.6 Hz,H-21),7.67 (1H,d,J=16.6 Hz,H-22)。以上数据和文献中数据一致[16],确定化合物为chaetoglobosin A。
化合物14 黄色结晶(甲醇)。ESI-MS m/z:433.1[M+H]+;1H NMR(400 MHz,DMSO-d6)δ:8.59(1H,s,H-1),6.75(1H,s,H-4),6.25(1H,d,J=15.9 Hz,H-9),6.68(1H,dd,J=15.9,8.2 Hz,H-10),2.27(1H,m,H-11),1.39(2H,m,H-12),0.89(3H,t,J=7.2,H-13),1.64(3H,s,7-Me),1.10(3H,d,J=6.6 Hz,11-Me),3.46(1H,m,H-4'),3.66(1H,m,H-5'),1.06(3H,d,J=6.6 Hz,H-6'),1.04(3H,d,J=7.2,4'-Me);13C NMR(400 MHz,DMSO-d6)δ:150.7(C-1),157.0(C-3),105.0(C-4),140.1(C-4a),109.8(C-5),183.1(C-6),87.3(C-7),164.8(C-8),111.0(C-8a),120.2(C-9),146.9 (C-10),40.1 (C-11),29.0 (C-12),12.1 (C-13),29.8 (7-Me),19.1 (11-Me),167.9 (C-1'),125.8(C-2'),200.8(C-3'),50.5(C-4'),69.5(C-5'),21.4(C-6'),12.9(4'-Me)。以上数据和文献中数据相似[17],确定化合物为5'-epichaetovirdin A。
化合物13 为毛壳属真菌产生的细胞松弛素类生物碱,该类生物碱被报道具有强烈的抗肿瘤,抗真菌等生物活性[18];化合物14 属于真菌来源的azaphilone 类色素,目前报道的天然azaphilone 类化合物具有抗肿瘤,抗病原细菌等多种生物活性[19]。细胞毒活性测试结果显示:10 μg/mL 浓度下,处理24 h 后,化合物13 对丰年虾幼虫显示了明显的毒性,致死率为83.4%;化合物14 也显示了中等强度的毒性,致死率为54.3%。阳性对照化合物ganodermanontriol 在该浓度下的死亡率为91.2%。已经发现的这两类真菌代谢产物结构新颖多变,活性显著。值得通过扩大发酵规模、改变培养基组成、培养条件及加入激发子等手段来进一步提高其化学多样性,从中发现细胞毒性更强的新化合物。
1 Zhang HW,Song YC,Tan RX.Biology and chemistry of endophytes.Nat Prod Rep,2006,23:753-771.
2 Liu ZQ.Chemical insights into ginseng as a resource for natural antioxidants.Chem Rev,2012,112:3329-3355.
3 Qin JC,Zhang YM,Gao JM,et al.Bioactive metabolites produced by Chaetomium globosum,an endophytic fungus from Ginkgo biloba.Bioorg Med Chem Lett,2009,19:1572-1574.
4 Qin JC,Gao JM,Zhang YM,et al.Polyhydroxylated steroids from an endophytic fungus,Chaetomium globosum ZY-22 isolated from Ginkgo biloba.Steroids,2009,74:786-790.
5 Qin JC,Zhang YM,Hu L,et al.Cytotoxic Metabolites produced by Alternaria No.28,anendophytic fungus isolated from Ginkgo biloba.Nat Prod Commun,2009,4:1473-1476.
6 Li X,Tian Y,Qin JC,et al.Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1.Bioorg Med Chem Lett,2013,23:2945-2947.
7 Yang SX,Gao JM,Zhang Q,et al.Toxic polyketides produced by Fusarium sp.,an endophytic fungus isolated from Melia azedarach.Bioorg Med Chem Lett,2011,21:1887-1889.
8 Gao JM(高锦明).Metabolites of Higher Fungi(高等真菌代谢产物),Northwest Agriculture and Forestry University Press,2003.74-75.
9 Ueda K,Tsujimori M,Kodani S,et al.An endoplasmic reticulum (ER)stress-suppressive compound and its analogues from the mushroom Hericium erinaceum.Bioorg Med Chem,2008,16:9467-9470.
10 Gu W.Bioactive metabolites from Alternaria brassicicola MLP08,an endophytic fungus residing in Malus halliana.World J Microbiol Biotech,2009,25:1677-1683.
11 Li P(李萍),Zhang GG(张国刚),Zuo TT(左甜甜),et al.Chemical constituents of the whole plant of Scutellaria barbata D.Don.J Shenyang Pharm Univ(沈阳药科大学学报),2008,25:549-552.
12 Huang DS(黄大森).Studies on the chemical constituents and biological activity of Incarvilles Sinensis LAM.Shenyang:Shenyang Pharmaceutical University (沈阳药科大学),MSc.2009.
13 Chen CH,Shaw CY,Chen CC,et al.2,3,4-trimethyl-5,7-dihydroxy-2,3-dihydrobenzofuran,a novel antioxidant,from Penicillium citrinum F5.J Nat Prod,2002,65:740-741.
14 Khaled AS,Mich DS,Tamer AA,et al.Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide;cytotoxic benzamides from Streptomyces sp.DGC1.J Antibioti,2012,65:615-622.
15 Bi YM(毕韵梅),Bi XB(毕旭滨),Zhao QR(赵黔榕),et al.Phenolic acid from culture broth of fungus Cephalosporium sp.AL031.J Chin Med Mater(中药材),2004,27:20-22.
16 Sekita S,Yoshihira S,Natori S,et al.Structure of Chaetoglobosin A and B,cytotoxic metabolities of Chaetomium globosum.Tetrahedron Lett,1973,14:2109-2112.
17 Borges WS,Mancilla G,Guimaraes DO,et al.Azaphilones from the endophyte Chaetomium globosum.J Nat Prod,2011,74:1182-1187.
18 Zhang Q,Li HQ,Zong SC,et al.Chemical and bioactive diversities of the genus Chaetomium secondary Metabolites.Mini-Rev Med Chem,2012,12:127-148.
19 Gao JM,Yang SX,Qin JC.Azaphilones:Chemistry and biology.Chem Rev,2013,21:1887-1889.