概率解题典型错误类型及根源分析

2014-01-02 10:13严曼丽
中学课程辅导高考版·学生版 2014年2期
关键词:奖券白球红球

严曼丽

概率与统计是高中数学教材中的重要内容之一,也是高考的重要问题.复习这部分内容时同学们要理清概念,明白公式的适用条件,灵活地运用概率与统计思想解决实际问题,特别要注意对平时训练中出现的易错题多加分析.下面通过对本章节的典型易错知识与方法加以分析,以提高大家的辨别能力,提高解题速度与正确率.

易错剖析一:抽样方法含义理解不清致误

例1学校附近的一家小型超市为了了解一年的客流量情况,决定用系统抽样从一年中抽出52天作为样本实施调查(即从每周抽取1天,一年恰好有52个星期),你觉得这样的选择合适吗?为什么?

错解:在这种情况下适合采取系统抽样.

错因分析:这家超市位于学校附近,其顾客很多为学生,客流受到学生作息时间的影响,如周末时,客流量会明显减少,如果用系统抽样来抽取样本,起始点抽到星期天的话,样本代表的客流量会明显偏低,另外,寒暑假也会直接影响超市的客流量.

正解:利用简单随机抽样和分层抽样,可以把一周分为7天,一年分52层,每层用简单随机抽样的方法,抽取适当的样本进行调查.

易错剖析二:概率与频率的关系不清致误

例2下列说法:

①频率反映事件发生的频繁程度,概率反映事件发生的可能性的大小;

②做n次随机试验,事件A发生m次,则事件A发生的概率为mn;

③频率是不能脱离n次试验的试验结果,而概率是具有确定性的,不依赖于试验次数的理论值;

④频率是概率的近似值,概率是频率的稳定值.

其中正确命题的序号为.

错解:①④.

错因分析:对概率和频率的关系认识不清,导致误判.如对于说法②,认为事件发生的频率就是事件发生的概率,再如对事件发生的概率的确定性认识不清,就可能认为说法③不正确等.

正解:①③④.

易错剖析三:误解基本事件的等可能性致误

例3任意投掷两枚骰子,求出现点数和为奇数的概率.

错解:点数和为奇数,可取3,5,7,9,11共5种可能,点数和为偶数可取2,4,6,8,10,12共6种可能,于是出现点数和为奇数的概率为55+6=511.

错因分析:上述解法是利用等可能性事件的概率模型,此时必须保证每一个基本事件出现的可能性均等,而上述解法点数为奇数、偶数出现的机会显然不均等,则不能用等可能性事件的概率模型来解答.

正解1:出现点数和为奇数,由数组(奇、偶)、(偶,奇)组成共有3×3+3×3=18个不同的结果,这些结果的出现是等可能的,故所求的概率为1836=12.

正解2:若把随机事件的全部等可能结果取为:(奇、奇)、(奇、偶)、(偶,奇)(偶、偶).点数和为奇数的结果为(奇、偶)、(偶,奇)两种,故所求概率为24=12.

易错剖析四:几何概型概念的不清致误

例4在等腰直角三角形ABC中,直角顶点为C,在∠ACB的内部任作一条射线CM,与线段AB交于点M,求AM

错解:在AB上取AC′=AC,在∠ACB内作射线CM看作在线段AC′上任取一点M,过C,M作射线CM,则概率为AC′AB=ACAB=22.

错因分析:上述作法好像很有道理,为什么错误呢?值得深思.考查此解法是否满足几何概型的要求,虽然在线段上任取一点是等可能的,但过点C和任取的点所作的射线是均匀的,因而不能把等可能取点看作等可能作射线,在确立基本事件时,一定要选择好观察角度,注意判断基本事件的等可能性.

正解:在∠ACB内的射线CM是均匀分布的,所以射线CM作在任意位置都是等可能的,在AB上取AC′=AC,则∠ACC′=67.5°,故满足条件的概率为67.5°90°=34.

易错剖析五:互斥与对立事件相混淆致误

例5把红、黑、白、蓝4张纸牌随机地分发给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是:.(填写“对立事件”、“不可能事件”、“互斥但不对立事件”)

错解:对立事件.

错因分析:本题的错误在于把“互斥”与“对立”混同,要准确解答这类问题,必须搞清对立事件与互斥事件的联系与区别:两事件对立,必定互斥,但互斥未必对立;互斥的概念适合多个事件,但对立概念只适合于两个事件;两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;两事件对立则表示他们有且只有一个发生.

正解:事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰好有一个发生,也可能两个都不发生,所以应选“互斥但不对立事件”.

易错剖析六:混淆互斥事件与相互独立事件致误例6一个通讯小组有A、B两套通讯设备,只要有一套设备正常工作,就能进行通讯,A、B设备各有2个、3个部件组成,只要其中有1个部件出现故障,这套设备就不能正常工作,如果在某段时间内每个部件不出现故障的概率都为p,试计算在这段时间内能进行通讯的概率.

错解:由题意知:在某段时间内A、B两套通讯设备能正常工作的概率分别为P(A)=p2,P(B)=p3,则在这段时间内能进行通讯即A、B至少有一个能正常工作,故在这段时间内能进行通讯的概率为P(A+B)=P(A)+P(B)=p2+p3.

错因分析:题中A、B两套通讯设备能正常工作这两个事件是相互独立的,上面所用的公式是两个互斥事件有一个发生的概率,互斥与独立是不同的两种关系,一般没有必然联系,不能混淆,把互斥结果套用在独立事件中是错误的,只有当A、B中一个是必然事件,另一个是不可能事件时,A、B既是互斥事件,又是独立事件.

正解1(逆向思考):A、B至少有一个能正常工作的对立事件为:A、B都不能正常工作,A不能正常工作的概率为1-p2,B不能正常工作的概率为1-p3,则在这段时间内能正常进行通讯的概率为1-(1-p2)(1-p3)=p2+p3-p5.

正解2(正向思考):A、B两套通讯设备在这段时间内能进行通讯这一事件包括:A正常B不正常,A不正常B正常,A、B都正常,且这三个事件彼此互斥.故在这段时间内能正常进行通讯的概率为p2(1-p3)+p3(1-p2)+p2·p3=p2+p3-p5.

易错剖析七:忽视公式成立的条件致误

例710张奖券中有3张中奖的奖券,每人购买1张,则前3个购买者中,恰好有1人中奖的概率为()

(A) C310×0.72×0.3(B) C13×0.72×0.3

(C) 310(D) 3A27A13A310

错解:因题中有“恰好有1人中奖”,根据n次独立重复试验恰好出现k次的概率计算公式Pn(k)=Ckn·pk·(1-p)n-k,马上得到答案(B).

错因分析:用独立重复试验的概率公式进行计算时,它有三个前提条件:

(1)每次试验都是在同一条件下重复进行的;

(2)每一次试验都彼此独立;

(3)每一次试验出现的结果只有两个.

只有这三个条件均满足才可使用,而此题中3个购买者去购买奖券时,由于是不放回抽样,所以彼此之间不独立的,则不能用上述公式解答.

正解:3个人从10张奖券中各购买1张奖券出现的结果数为A310个,且出现的可能性均等,恰好有1人中奖出现的结果为3A27A13,故恰好有1人中奖的概率为3A27A13A310,选(D).

易错剖析八:求概率过程中把有序还是无序混为一谈致误例8一个口袋装有6只球,其中4只白球,2只红球,从口袋中取球两次,第一次取出1只球不放回口袋,第二次从剩余的球中再取1球,求取到的2只球中至少有一只白球的概率.

错解:取到的2只球中至少有1只白球包括:2只都是白球,1只白球1只红球,故取到的2只球中至少有1只白球出现的结果数为A24+A12A14,依据等可能性事件的概率的求法,则取到的2只球中至少有1只白球的概率为A24+A12A14A26=23.

错因分析:这是古典概率常见的模型——摸球模型,有“有序”与“无序”之分,不能混淆.从上述解法中可知:取球的过程是有顺序的,那么取到1只白球1只红球这种情况中有第一次取到白球、第二次取到红球与第一次取到红球、第二次取到白球两种不同的情况.

正解1(正向思考):取到2只球中至少有1只白球出现的结果数为A24+A12A14+A14A12,故所求概率为A24+2A12A14A26=1415.

正解2(逆向思考):所求事件的对立事件是:取到的2只球都是红球,故所求概率为1-A22A26=1415.

概率与统计部分的定义、公式较多,学习时由于抽样方法混淆、概型错用、互斥事件与独立事件混淆等经常出错,这都是由于基础知识掌握不牢造成的.因此,应更加注重基本概念、基本公式与基本方法的强化训练,总结相应题型的通性通法并不断反思,定能取得理想的成绩.

(作者:朱振华,江苏省海门中学)endprint

正解2(正向思考):A、B两套通讯设备在这段时间内能进行通讯这一事件包括:A正常B不正常,A不正常B正常,A、B都正常,且这三个事件彼此互斥.故在这段时间内能正常进行通讯的概率为p2(1-p3)+p3(1-p2)+p2·p3=p2+p3-p5.

易错剖析七:忽视公式成立的条件致误

例710张奖券中有3张中奖的奖券,每人购买1张,则前3个购买者中,恰好有1人中奖的概率为()

(A) C310×0.72×0.3(B) C13×0.72×0.3

(C) 310(D) 3A27A13A310

错解:因题中有“恰好有1人中奖”,根据n次独立重复试验恰好出现k次的概率计算公式Pn(k)=Ckn·pk·(1-p)n-k,马上得到答案(B).

错因分析:用独立重复试验的概率公式进行计算时,它有三个前提条件:

(1)每次试验都是在同一条件下重复进行的;

(2)每一次试验都彼此独立;

(3)每一次试验出现的结果只有两个.

只有这三个条件均满足才可使用,而此题中3个购买者去购买奖券时,由于是不放回抽样,所以彼此之间不独立的,则不能用上述公式解答.

正解:3个人从10张奖券中各购买1张奖券出现的结果数为A310个,且出现的可能性均等,恰好有1人中奖出现的结果为3A27A13,故恰好有1人中奖的概率为3A27A13A310,选(D).

易错剖析八:求概率过程中把有序还是无序混为一谈致误例8一个口袋装有6只球,其中4只白球,2只红球,从口袋中取球两次,第一次取出1只球不放回口袋,第二次从剩余的球中再取1球,求取到的2只球中至少有一只白球的概率.

错解:取到的2只球中至少有1只白球包括:2只都是白球,1只白球1只红球,故取到的2只球中至少有1只白球出现的结果数为A24+A12A14,依据等可能性事件的概率的求法,则取到的2只球中至少有1只白球的概率为A24+A12A14A26=23.

错因分析:这是古典概率常见的模型——摸球模型,有“有序”与“无序”之分,不能混淆.从上述解法中可知:取球的过程是有顺序的,那么取到1只白球1只红球这种情况中有第一次取到白球、第二次取到红球与第一次取到红球、第二次取到白球两种不同的情况.

正解1(正向思考):取到2只球中至少有1只白球出现的结果数为A24+A12A14+A14A12,故所求概率为A24+2A12A14A26=1415.

正解2(逆向思考):所求事件的对立事件是:取到的2只球都是红球,故所求概率为1-A22A26=1415.

概率与统计部分的定义、公式较多,学习时由于抽样方法混淆、概型错用、互斥事件与独立事件混淆等经常出错,这都是由于基础知识掌握不牢造成的.因此,应更加注重基本概念、基本公式与基本方法的强化训练,总结相应题型的通性通法并不断反思,定能取得理想的成绩.

(作者:朱振华,江苏省海门中学)endprint

正解2(正向思考):A、B两套通讯设备在这段时间内能进行通讯这一事件包括:A正常B不正常,A不正常B正常,A、B都正常,且这三个事件彼此互斥.故在这段时间内能正常进行通讯的概率为p2(1-p3)+p3(1-p2)+p2·p3=p2+p3-p5.

易错剖析七:忽视公式成立的条件致误

例710张奖券中有3张中奖的奖券,每人购买1张,则前3个购买者中,恰好有1人中奖的概率为()

(A) C310×0.72×0.3(B) C13×0.72×0.3

(C) 310(D) 3A27A13A310

错解:因题中有“恰好有1人中奖”,根据n次独立重复试验恰好出现k次的概率计算公式Pn(k)=Ckn·pk·(1-p)n-k,马上得到答案(B).

错因分析:用独立重复试验的概率公式进行计算时,它有三个前提条件:

(1)每次试验都是在同一条件下重复进行的;

(2)每一次试验都彼此独立;

(3)每一次试验出现的结果只有两个.

只有这三个条件均满足才可使用,而此题中3个购买者去购买奖券时,由于是不放回抽样,所以彼此之间不独立的,则不能用上述公式解答.

正解:3个人从10张奖券中各购买1张奖券出现的结果数为A310个,且出现的可能性均等,恰好有1人中奖出现的结果为3A27A13,故恰好有1人中奖的概率为3A27A13A310,选(D).

易错剖析八:求概率过程中把有序还是无序混为一谈致误例8一个口袋装有6只球,其中4只白球,2只红球,从口袋中取球两次,第一次取出1只球不放回口袋,第二次从剩余的球中再取1球,求取到的2只球中至少有一只白球的概率.

错解:取到的2只球中至少有1只白球包括:2只都是白球,1只白球1只红球,故取到的2只球中至少有1只白球出现的结果数为A24+A12A14,依据等可能性事件的概率的求法,则取到的2只球中至少有1只白球的概率为A24+A12A14A26=23.

错因分析:这是古典概率常见的模型——摸球模型,有“有序”与“无序”之分,不能混淆.从上述解法中可知:取球的过程是有顺序的,那么取到1只白球1只红球这种情况中有第一次取到白球、第二次取到红球与第一次取到红球、第二次取到白球两种不同的情况.

正解1(正向思考):取到2只球中至少有1只白球出现的结果数为A24+A12A14+A14A12,故所求概率为A24+2A12A14A26=1415.

正解2(逆向思考):所求事件的对立事件是:取到的2只球都是红球,故所求概率为1-A22A26=1415.

概率与统计部分的定义、公式较多,学习时由于抽样方法混淆、概型错用、互斥事件与独立事件混淆等经常出错,这都是由于基础知识掌握不牢造成的.因此,应更加注重基本概念、基本公式与基本方法的强化训练,总结相应题型的通性通法并不断反思,定能取得理想的成绩.

(作者:朱振华,江苏省海门中学)endprint

猜你喜欢
奖券白球红球
天上掉下奖券
正确理解概率公式
好雪片片
好雪片片
好雪片片
概率中的摸球问题
概率与统计高考解答题考向
走迷宫
骗人的抓奖游戏
把握教学要求 凸显知识本质