刘 欢 王珊珊
王珊珊 西安工业大学北方信息工程学院 陕西西安
21世纪将是微电子技术及其相关产业持续发展的新时代,微电子采用的微制造技术正不断向各个领域继续渗透。一方面,无论是光的、机械的,还是电子的器件,都在利用微制造技术向微型化方向发展;另一方面,大多数器件都采用与IC(集成电路)工艺兼容的微加工技术,与集成电路部分(如信号处理、存储芯片)集成在一起,向集成化方向发展。这一变化已渗入到各行各业,并从毕业生的就业趋势中凸显出来。
微制造技术所涉及的光电子、半导体、微电子等专业属于新兴学科、交叉专业,一方面,硬件设施、基础条件的前期投入、历史积累比较薄弱;另一方面,微制造相关专业的设备价格昂贵,教学部门难以承担[1]。导致目前教学用的微制造实验设备非常落后,学生在进行实验时,常常会遇到因为设备问题而使得实验结果与书上描述或者生产实际相差甚远的情况。此外,微电子、微制造的设备更新换代速度很快。学生步入工作岗位后会发现,在学校学习使用的微制造设备早已被整个行业所淘汰,根本学无所用。
受设备不足的限制,大部分本科阶段的微电子、微制造相关专业的实验往往停留在版图设计的层面,即使有加工的实验条件,往往也流于形式,仅仅是熟悉一下微加工工序的流程,使得真正有想法的学生创新能力得不到发挥与锻炼。
针对以上问题,合理利用科研资源,开发实验教学内容对于促进学生实践显得尤为重要。
首先,通过网络平台这一学生容易接受的方式将微制造实验室可以提供的教学资源展示出来,比如设备资源、设备如何进行操作、可实现哪些功能、在产品制造中的地位与作用等信息,看不懂不清楚的可以在线答疑或在论坛里讨论。让学生对光电子集成器件制造工艺有更加系统和深刻的了解,为今后的工作奠定一定的实践基础和应用基础。
其次,可将微制造在某一行业或某个领域已经获得大规模应用的技术设置为专业实验,如“芯片制造技术”,“MEMS制造工艺”,“液晶平板显示器件制造技术”等,以行业通用标准工艺技术作为参考,制作多媒体课件、具体操作的视频教程供学生学习。
最后,如果学生有需求,可以向实验室申请,结合自己专业选择实验进行选修。在学生完成专业课程设计阶段的学习后,在掌握一定的光电器件的基本设计理念后,运用专业课知识,进行实验技能和创新技术的综合性实验,这样对于学生独立自主地发现问题、分析问题和解决问题的能力有很大的提高,更符合本专业技术人才培养的目标。
微制造技术开放创新实验平台的设计理念是充分调动学生学习过程中的感知、懂得、理解、设计和再现等心理过程[4]。还可结合教学培养计划中的基础训练、应用实践和创新课程三个阶段面向学生开放,实现与光电系的基础实验室和专业实验室的兼容。
学生在这里成为实验教学的主体,有充足的时间进行创新实验的构思与选题,使学生能够根据个人的理论基础,不同的专业特点,选择自己的兴趣爱好。学生和教师双方共同在实验室通过边教、边学、边做来完成实验教学任务,这种教学模式改变了传统的理论和实践相分离的做法,充分发挥了教师的主导作用,更注重学生动手能力的培养,丰富了实践教学环节,提高了教学质量[5]。
本文所提出的微制造技术开放创新实验平台利用现有的科研资源,开发出部分体现微电子、机电、光电专业特色的,与课程设置紧密联系的实验内容,在不影响科研活动正常进行的前提下,同时实现科研为教学服务的目标。经过半年的试运行,取得了良好的教学效果,得到了教师与学生的一致好评。在避免重复投资、重复建设、资源浪费的同时,解决了目前微制造相关专业实践环节硬件条件不足的问题,达到了科研与教学的完美结合。
[1] 刘欣,田瑞云.主体性教学模式的理论建构与实践探索[J].2005,27(1):117-118.
[2] 闻亮.加强实践教学,注重学生创新精神和实践能力的培养[J].内蒙古师范大学学报,2003,16(2):46-48.
[3] 袁力.高校实验室开放的实践与对策研究[J].中国医学装备,2006,3(9):7-8.
[4] 黄友锐,杨茂宇.加强实践教学环节,提高电气信息类专业人才培养质量[J].中国科技信息,2006,(17).
[5] 王力纲,崔颖.构建应用型人才培养的实践教学体系研究[J].当代教育论坛,2010,(5):22-23.