刘杰 易荣
摘 要 煤气化技术是煤化工发展的核心技术,本文就两种常用的煤气化技术从工艺、技术、环保、投资、可靠性等多个方面进行了对比。
关键词 煤气化 Luigr GSP
煤炭气化是煤炭转化的主导途径之一,也是煤化工技术的核心。气化过程是煤炭的一个热化学加工过程,它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气、CO2等为气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。气化时所得的可燃气体称为煤气,进行气化的设备称为煤气发生炉或气化炉。不论采用何种气化炉,产生的煤气都需经过净化、变换工段才能作为原料气使用。故气化炉的不同是各气化工艺最大的区别。目前,Luigr工艺与GSP工艺是工业应用中的最为成熟、应用最为广泛,且是设计首选的工艺技术。本文就这两种工艺的特点进行比较。
一、Luigr工艺
1.Luigr气化工艺概况。Luigr气化工艺是由德国Luigr公司开发设计的以块煤为气化原料的移动床加压气化技术。煤块由气化炉顶部加入,气化剂由气化炉底部通入,煤料与气化剂在气化炉内逆流接触。煤在气化炉内从上向下经过干燥层、干馏层、甲烷层、气化层(还原层)、氧化层和灰渣层,而气化剂从下至上进入煤料床层内,一次被预热并与煤焦发生燃烧及气化反应,产生高温煤气的显热使原料煤干馏和干燥,同时降低了出口煤气的温度,有利于后序煤气的净化。灰渣的显热预热了入炉的气化剂后,落入灰锁,间断性地卸到渣箱内,定期排出。液态排渣鲁奇炉特别适合于气化高挥发分、低反应性的次烟煤,而固态排渣鲁奇炉又非常适合处理高灰、高灰熔融性及高反应性的煤,两者可相互补充。但鲁奇固态排渣气化炉在使用焦粘结性煤时,容易造成床体堵塞,使气流不畅,煤气质量不稳定。另外,由于煤在炉内需停留0.5 h~1h,因而单炉气化容量无法设计很大。
2.Luigr气化工艺的特点。(1)原料使用范围广。除黏结性较强的烟煤外,从褐煤到无烟煤均可气化。(2)气化压力高、气流速度低,可气化碎煤。(3)可气化水分、灰分较高的劣质煤。(4)单炉生产能力大。(5)气化过程是连续的,有利于实现自动控制。(6)设备和管道尺寸小。(7)气化较年轻的煤时,可以得到各种有价值的副产品。(8)通过改变压力和后续工艺流程,可以获得不同比例的化工合成原料气。典型Luigr气化工艺流程见图1。
二、 GSP工艺
1.GSP气化技术概况。GSP气化技术是由原东德的德意志燃料研究所开发的加压气流床气化技术。20世纪70年代,前民主德国燃料研究所在弗莱堡先后建成热负荷为3 MW、5 MW的中试装置,对几十种煤进行了试验。1984年在黑水泵气化厂建成投煤量为720 t/d的示范装置。该套装置以煤为原料一直运行到1991年,后来将原料改为焦油、油渣等。
GSP气化技术科采用干煤粉和水煤浆两种方式进料,气化温度达1400 ℃~1700 ℃。压力最高达8 MPa,碳转化率达99%,开工方便,无需备炉,设备投资和运行费用相对较低。工业技术成熟,目前有5套装置运行,国内尚无示范装置。原料煤经粉碎、干燥后,在球磨机中磨成80%以上的煤粉,粒度小于0.2 mm,并同除尘器中返回的飞灰一起,经系统与氧气、水蒸气一起通过炉顶的单烧嘴喷入气化炉发生气化反应,生产粗煤气和熔渣并向下流,进入激冷室。粗煤气经脱氧水喷淋降温到220 ℃,送入洗涤塔洗涤除尘,接着进行粗煤气的变换、冷却、冷凝和脱硫,最后送至往后工序。
2.GSP气化工艺的特点。(1)煤种适应性强。(2)技术指标优越。(3)氧耗低。(4)设备寿命长,维护量小,连续运行周期长,在线率高。(5)开、停车操作方便,且时间短。(6)操作弹性大。(7)自动化水平高。(8)对环境影响小。(9)工艺流程短。
三、Luigr和GSP气工艺技术对比
Luigr气化工艺与GSP气化工艺的主要特性对比,见表1。
1.结构方面。GSP气化炉结构较为简单,气化炉较大,使用稳定性较好;Luigr炉由于煤锁体系较为复杂,导致其整体结构较为复杂,且气化炉较小。但由于GSP炉需进口,而Luigr炉则基本实现国产,故这两种工艺的气化装置的投资费用相差不大,GSP稍高。
2.工艺产品方面。GSP气化工艺产品主要为煤气,副产物种类和产量都较少,粗煤气中CO、H2含量较高,达到95%左右,煤气化程度较高;Luigr碎煤加压气化所产出的粗煤气中,H2、CO2含量较低,为60%左右,且产品除了煤气之外,还主要副产煤焦油。但煤化工的两条最主要合成路线——甲醇合成和SNG合成,其合成产品量都是由氢气的量决定的,而GSP工艺所产生的炉气中CO的量远高于H2(CO约为71%,H2约为24%),故大量的CO需经变换反应生成H2,同时产生大量CO2,使得大量碳质被浪费,而Luigr工艺的炉气中CO约为25%,H2约为40%,CO需要变换的量较少
3.环境影响方面。GSP工艺的废气量高于Luigr工艺(GSP工艺约为Luigr工艺的2倍),其原因一方面是由于GSP的耗空气量较大,空分规模高于Luigr工艺,大量污气N2被排放;另一方面是大量CO需经变换反应生成CO2,CO2基本直接被排入大气中。N2和CO2成为GSP工艺废气量较高的主要因素。GSP工艺的废水量低于Luigr工艺,这是由于Luigr工艺会产生焦油,故需要进行油气水分离阶段,导致污水增多。GSP工艺的废固量高于Luigr工艺,这是由于Luigr工艺中有部分不易气化的残炭进入焦油中,成为焦油中的重要组成部分,而GSP工艺则只能将这部分残炭排入废渣中,因此导致废固量增加。
4.整体投资方面。GSP工艺与Luigr工艺相差不大。分析投资组成,二者差距较大的装置为空分装置和公用工程。GSP工艺的耗气量较大,其空分装置规模较大,GSP工艺空分装置的投资约为Luigr工艺的2倍。由于Luigr工艺有副产品煤焦油,导致污水处理部分的流程长,故投资费用远高于GSP工艺,约为GSP工艺的20倍。GSP工艺需处理的废水量小,环保投资较低。
四、结束语
GSP工艺与Luigr工艺目前都有正式的生产应用,都属于较为成熟的工艺技术,但我国引进Luigr工艺时间较长,对工艺的消化吸收较好,所有设备基本实现国产。而GSP气化工艺由于引进的时间较晚,主体设备需要进口。
参考文献
[1]崔意华,袁善录.GSP加压气流床气化技术工艺分析[J].煤炭转化, 2008, 31(1).
[2]尤彪,詹俊怀.固定床煤气化技术的发展及前景[J].中氮肥, 2009,(9).
[3]夏鲲鹏,陈汉平,王贤华等.气流床煤气化技术的现状及发展[J].煤炭转化,2005,28(4).
[4]陈启文等.煤化工工艺[M].北京:化工工业出版社,2008.