矩形中的折叠问题

2013-04-29 00:44:03李春蓉张杏华
学苑创造·C版 2013年6期
关键词:折痕重合纸片

李春蓉 张杏华

矩形按不同的方式进行折叠,就会产生各种各样的几何问题。这些问题综合了三角形、四边形等多边形的诸多知识,而且往往会融入对称思想,解法灵活、趣味性强,有利于考查同学们的动手能力、空间想象力和几何变换思维,因此越来越受到中考命题者的青睐。

如图1,折叠矩形ABCD的一边AD,使点D落在边BC上的点F处,已知折痕[AE=55cm],且[tan∠EFC=34],

(1)△AFB与△FEC有什么关系?

(2)求矩形ABCD的周长。

分析与解

[已知条件\&隐含条件\&矩形ABCD\&[∠DAB=∠B=∠C=∠D=90°],即图中有直角三角形;AB=DC、AD=BC\&折叠\&△AED≌△AEF,则AD=AF,DE=FE,∠AFE=∠D=90°,∠FAE=∠DAE,

∠AEF=∠AED\&由同角的余角相等得∠FAB=∠EFC(∠AFB的余角),∠AFB=∠FEC

(∠EFC的余角)\&[tan∠EFC=34]\&[ECFC=34]\&[AE=55cm]\&\&]

对于第(1)问,很容易证得△AFB∽△FEC.

对于第(2)问,有以下几种设元方式:

情况一直接设元AD=x,方法行不通。情况二直接设元AB=x,由△AFB∽△FEC,可以得到[BFAB=ECFC=34],可建立方程,但计算较复杂。其他几种情况都是间接设元,其中情况三不能求解,情况四、五、六、七可利用△AFB∽△FEC得到的边关系用勾股定理建立方程。其实只要是对与此比例式有关的线段进行设元,都可求解。但情况七的计算最为简便。

解决矩形中的折叠问题,关键是:

1. 抓住折叠本质。①折起部分与重合部分是全等的;②折起部分与重合部分是以折痕为对称轴的轴对称图形,且对称轴垂直平分对应点之间的连线。

2. 找出隐含的折叠前后的位置关系和数量关系。

3. 结合三角形全等、勾股定理、相似三角形等知识,设出恰当的未知数,建立方程求解。

我们一起看看下面几组变式。

变式一:变条件。

如图2,矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上的点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0. 求点E、F的坐标(用含m的式子表示);

变式二: 变顶点位置。

如图3,在一面积为1的正方形纸片ABCD中,M、N分别是AD、BC边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结PQ,则MP=_________。

变式三:变折痕位置。

已知:矩形纸片ABCD,AB=2,BC=3。

操作:将矩形纸片沿EF折叠,使点B落在边CD上。

探究:(1)如图4,若点B与D重合,你认为△EDA′和△FDC全等吗?如果全等给出证明,如果不全等请说明理由。

(2)如图5,若点B与CD中点重合,求△FCB′与△B′DG的周长之比。

猜你喜欢
折痕重合纸片
《纺织品织物折痕回复角的测定》正式发布
听话的纸片
童话世界(2020年26期)2020-10-27 02:23:30
纸片也能托住水
折痕
青春(2017年5期)2017-05-22 11:57:33
电力系统单回线自适应重合闸的研究
电子制作(2017年10期)2017-04-18 07:23:07
讨厌体假日
双舱船
考虑暂态稳定优化的自适应重合闸方法
纸片里的“欢声笑语”