陈华等
摘要:生命周期评价(LCA)已经广泛应用于农副产品和食品工业研究中,涉及到原材料获取、能源消耗、污染物排放等多个方面,分析了其对环境的影响状况。总结了国内外近几十年来生命周期评价在农副产品和食品工业中的应用研究,具体涉及到渔业、畜牧业、种植业、其他食品工业、包装和废弃物处理等6个方面,提出了生命周期评价在农副产品和食品工业中的应用趋势。
关键词:生命周期评价(LCA);农副产品;食品工业;应用
中图分类号:X822.1;N945.11 文献标识码:A 文章编号:0439-8114(2013)07-1493-05
1969年美国中西部资源研究所(MRI)对可口可乐包装类型选择的研究开启了生命周期评价(Life cycle assessment,LCA)。1990年国际环境毒理与化学学会(SETAC)首次召开了LCA国际研讨会,随后出版了纲领性报告《生命周期评价纲要:实用指南》,为LCA方法提供了基本技术框架。农副产品和食品工业生产涉及的环节多、范围广,不同产品产生的不良环境类型和程度差别很大。LCA方法在农副产品和食品工业应用领域可主要分为渔业、畜牧业、种植业、其他食品工业、包装和废弃物处理等6个方面。综述了LCA方法在农副产品和食品工业中的应用研究概况及其发展趋势。
1 生命周期评价在农副产品和食品工业中的应用
1.1 渔业生命周期评价现状
李君等[1]对扇贝的两种利用模式进行了对比评价,显示模式二(产品为扇贝柱、复合氨基酸、鱼虾饵料和贝壳工艺品)在资源消耗、温室效应、酸化影响、潜在健康影响方面比模式一(产品为扇贝柱、食用贝边、鱼虾鲜饵料和饲料添加剂)低,而在固体废弃物和富营养化方面比模式一高。Vázquez-Rowe等[2]采用LCA方法评价了鳕鱼的捕捞、加工、运输等环节的环境影响后发现加工环节环境影响最大。Vázquez-Rowe等[3]运用LCA方法评价了两种捕鱼方法后,获知拖网捕鱼产生的不良环境影响程度比钩叉捕鱼高,通过降低拖网捕鱼的燃油消耗量能降低不良环境的影响。地中海贻贝加工和运输过程涉及到酸化、资源消耗、全球变暖、生态毒性、人体毒性、富营养化、破坏臭氧层和形成光化学氧化剂等多项不良环境影响因子[4]。Ziegler等[5]将塞内加尔两种捕虾方式对比后发现两者主要环境影响环节差别很大,拖网捕虾为捕捞环节,垂钓捕虾则为加工和贮藏环节。
1.2 畜牧业生命周期评价现状
生产牛奶会排放温室气体和引起富营养化,从而造成环境恶化。运用LCA方法评价欧洲牛奶后,发现通过降低牧场营养过剩程度、减少进口浓缩饲料和牧草饲养量、增加本地牧草供给比例等措施,可以降低不良环境影响程度[6,7]。Thomassen等[8]采用LCA方法对比了荷兰传统牛奶与有机牛奶的区别,结果表明生产等量牛奶,其中有机牛奶产生的不良环境影响更小。秦凤贤[9]利用LCA方法对中国产牛奶分析后指出,其潜在环境影响因子依次为富营养化、固体废弃物和全球变暖与酸化。乳制品加工业主要环境影响因子为耗水量、有机污水排放量和能源消耗[10]。
Karen等[11]运用LCA方法研究了加拿大西部牛肉造成的温室气体排放量,饲养环节的温室气体排放量占总排放量80%,另外20%来自饲料环节。Peters等[12]对澳大利亚3种牛肉生产系统引起的温室气体排放量和能源消耗量评估后发现,两者数值均低于国际平均标准,提高生产和运输效率也可以降低能源消耗量。Nathan等[13]通过对比美国爱荷华州的3种牛肉生产方式(①采用爱荷华州的饲料饲养肉牛;②采用爱荷华州以外的其他州的饲料圈养肉牛;③在爱荷华州肉牛培育中心的牧场放养肉牛)的温室气体排放量,结果表明在产生等量牛肉条件下,第三种牛肉生产方式温室排放量最少,提高饲料利用效率能显著降低温室气体排放量。肉牛育肥环节中饲养时间、饲料类型、畜舍建设和粪便储存等均会产生不良环境影响,其中饲养阶段是最主要的环境影响环节,其时间越短,环境影响程度越低[14,15]。有机方式饲养肉牛虽然能减少药物使用量,但需要更大面积的牧场才能满足饲养要求[16]。英国肉鸡有室内圈养、室外散养、有机喂养等3种喂养方式,Leinonen等[17]评价后指出与室内圈养相比,室外散养和有机喂养的能源消耗量较少。在拓宽调查范围后,发现农业阶段是猪肉生产中最主要的环境影响环节[18]。采用有机方式比常规方式生产猪肉排放的氨和磷酸盐更少,采用密集种植和多添加氮肥的方式种植草料能减少猪肉生产中产生的环境影响[19,20]。以蛋白质为功能单位,最高效环保肉制品为鸡肉,其次为猪肉,最后为牛肉。然而,当以能量为功能单位时,最高效环保肉制品为猪肉,其次为鸡肉,最后为牛肉。在两种功能单位下,牛肉效率都是最低的,可能与其饲料转化率低有关[21]。
1.3 农产品生命周期评价现状
农业温室气体排放量占全球排放总量25%~30%。研究发现通过减少农业生产面积和提高粮食单位面积产量,欧盟农业年温室气体排放量可减少3 200万t[22]。Thomas等[23]采用LCA方法评价了农业和环境负担之间的关联度。水稻是世界上最重要的农产品之一,按照生命周期研究,水稻可分为收获前和收获后两个阶段。Phong等[24]通过调查湄公河三角洲3种种植类型(O-LF、R-HF、R-MF)在土地利用率、能源消耗、废物产出等方面的区别,结果显示,当R-HF效率较低时,不良环境影响最大。过量或低效使用肥料和CH4排放是水稻生产过程中的主要环境影响因子。Breiling等[25]评估了日本水稻生产温室气体(GHG)排放后,指出其数值与种植规模、品种和种植地点密切相关。Roy等[26]运用LCA方法评价了小规模生产蒸谷米的环境负荷类型,发现其会随着生产进程而发生变化,且比其他品种变化更大。Sakaorat等[27]分析了泰国水稻种植及其加工的环境影响,显示获得1 kg大米会产生2 927 g CO2(全球变暖)、3.187 g SO2(酸化)、12.896 g NO■■(富营养化),95% CO2产生于种植环节,3% CO2产生于播种环节,其余2% CO2产生于碾磨工艺。中国太湖水稻种植会引起酸化、富营养化、水源枯竭、全球变暖和能源枯竭,提高氮肥利用效率能降低资源消耗和废气排放量[28]。
栽培方法(温室或常温、有机或常规、水培或土培)、品种、地点、包装和运输均会影响番茄生命周期评价结果[29-34]。据报道,温室气体排放量与番茄品种和温室结构有关[31]。温室内栽培番茄产生的温室气体高于常规栽培[35],塑料薄膜大棚比温室栽培消耗资源少[36]。种植方式、病虫害防治方法和废弃物管理等对番茄环境效益都有影响[37],化学防治害虫比综合防治产生的温室气体更多[38]。加工和包装是番茄酱生产中的环境热点,可通过改变番茄酱类型或降低番茄酱浓缩程度来降低酸化程度[39]。
Point等[40]评价了加拿大新斯科舍省750 mL瓶装葡萄酒的环境影响,结果显示其种植、运输和消费是最大环境影响环节,通过提高肥料利用效率、种植高产有机品种、采用轻质玻璃瓶能降低环境影响。Humbert等[41]比较了滴滤咖啡、特浓咖啡胶囊、喷雾干燥速溶咖啡环境负担,显示50%的环境问题是由种植、处理、加工、包装、销售和广告等环节产生的,另外50%的环境问题是由制造、购置和使用生产工具、废物处置等产生的。
与常规品种相比,转基因甜菜品种因为使用除草剂量少,从而减少了对环境和人类健康的危害[42]。以单位面积(hm2)和单位产量(t)为功能单位,比较德国阿尔高地区3种耕作方式(密集型:N 80.1、P5.3 kg/hm2;粗放型:N31.4、P4.5 kg/hm2;有机型:N31.1、P2.3 kg/hm2)的环境影响区别后,发现粗放型和有机型比集约型化肥使用量更少,能源消耗量也更低[43]。
1.4 其他食品工业产品生命周期评价现状
面包是欧美国家的主要食品之一。多个国家和地区研究人员运用LCA方法评价面包加工的环境影响[44],评价范围包括小麦种植方式(常规和有机)、小麦磨粉工艺和面包生产流程(包装工艺和清洁剂类型),结果表明采用有机方式种植小麦、工业化磨粉和大型面包厂联合生产面包为环境负担最小的生产方式。烘烤和运输阶段是面包生产中环境影响的最大环节,烘烤阶段环境因子为光氧化和能源消耗。
啤酒酿造也是LCA方法评价的重要研究对象之一。啤酒系统边界不同可能导致最终结果差别很大。若啤酒边界只考虑啤酒生产、运输、啤酒容器、废物处理,环境影响只考虑温室气体排放量[45-47],啤酒生产过程的最大环境影响环节就为麦汁生产,其次为过滤和包装,最次为发酵和储存[45]。扩大系统边界后,Koroneos等[46]确定啤酒瓶生产为最大环境影响环节,其次为啤酒包装和啤酒生产阶段。Hospido等[47]发现啤酒生产、包装和大麦收获与运输是最大能源消耗环节。任辉等[48]发现啤酒主要环境影响因子影响潜值依次为:富营养化(0.061)、工业烟尘和粉尘(0.015)、固体废弃物(0.003),建议通过废水处理设施、改进物料粉碎方式和回收利用废硅藻土降低环境影响。
Roes等[49]评价了速食食品的环境影响,发现最大环境负荷环节为获取食品原料和固体废物处理环节。Zufia等[50]调查了番茄金枪鱼环境影响,并提出改进方法以减少潜在环境负担。
1.5 包装生命周期评价现状
包装能使食品与外界环境如氧气、水分、光照和微生物等隔离,并为食品运输和储存提供缓冲和保护作用。食品包装是造成食品环境负担的主要根源之一。提高食品包装回收利用率,降低主包装重量能降低环境负担。Hospido等[47]研究表明玻璃瓶生产和运输造成的环境影响占全球包装系统总量的1/3,回收再利用玻璃瓶能显著降低环境负担[51]。采用多层塑料袋代替金属罐包装小袋咖啡,虽然不利于包装材料的回收,但对环境影响更小[52]。对比鸡蛋两种不同包装后发现,聚苯乙烯包装产生烟雾、粉尘和环境酸化等不良环境影响,而再生包装纸的不良环境影响为重金属污染和产生致癌物质[53]。Ross等[54]研究表明制定和实施塑料包装回收和再利用政策可以产生显著的环境效益。Mourad等[55]探讨提高牛奶无菌包装回收再利用可行性后发现,当回收率增加70%时,其不良环境影响可降低48%。Hyde等[56]认为食品和饮料行业的包装原材料使用量可以减少12%。Humbert等[57]对比了玻璃瓶和塑料瓶包装婴儿食品在环境影响方面的区别,发现塑料瓶环境影响更小。Sonesson等[58]报道大量使用包装材料给瑞典牛奶供应链造成巨大环境压力。
1.6 食品废弃物生命周期评价研究
食品工业通常产生淤泥、有机污水和固体废料。提高废弃物利用率可以减少原材料使用量和水资源消耗量[59]。Ramjeawon[60]认为把甘蔗糖厂废水中的重污染水与冷凝水区分开能降低废水处理规模和费用。Hirai等[61]运用LCA方法评估了4种食品废物处理方案(①焚烧;②生产生物燃料后焚烧;③生产生物燃料后堆肥;④直接堆肥)造成的环境影响区别,表明方案3潜在环境影响最小。Lundie等[62]研究表明在有氧操作处理食品废物情况下,家庭堆肥对环境影响最小。焚烧已经生物降解的固体废物比直接焚烧食品工业废弃物产生的不良环境影响更小[63],从源头减少废物或污染源对环境影响更小[64]。食品废物处理方法与环境负担密切相关,采用食品废物综合管理系统能更好地降低环境影响。
2 结论
LCA方法能有效评价农副产品和食品工业的环境影响状况,研究表明通过变换生产、加工、包装、销售和消费模式可以减少农副产品和食品工业的环境负荷。预测或衡量农副产品和食品工业的环境负荷,需要深入地了解研究系统范围和应用程序。LCA方法引入到农副产品和食品工业评价中,将为具有环保意识的决策者、生产者、消费者选择环境友好型农副产品和食品提供可靠的信息。
参考文献:
[1] 李 君,孙恢礼,吴园涛,等.海洋贝类利用模式生命周期评价方法研究[J].热带海洋学报,2007,26(4):70-75.
[2] V?魣ZQUEZ-ROWE I, MOREIRA M T, FEIJOO G. Life cycle assessment of fresh hake fillets captured by the Galician fleet in the Northern Stock[J]. Fisheries Research,2011,110(1):128-135.
[3] V?魣ZQUEZ-ROWE I, MOREIRA M T, FEIJOO G. Estimating global discards and their potential reduction for the Galician fishing fleet (NW Spain)[J]. Marine Policy,2011,35(2):140-147.
[4] LOZANO S, IRIBARREN D, MOREIRA M T, et al. Environmental impact efficiency in mussel cultivation[J]. Resources, Conservation and Recycling,2010,54(12):1269-1277.
[5] ZIEGLER F, EICHELSHEIM J L, EMANUELSSON A, et al. Life cycle assessment of southern pink shrimp products from Senegal [A]. DAVIS J. An Environmental Comparison between Artisanal Fisheries in the Casamace Region and a Trawl Fishery Based in Dakar[C]. Italy, Rome:Food and Agriculture Organization of the United Nations, SIK Report 789, 2009. 234-237.
[6] WILLIAMS A G, AUDSLEY E, SANDARS D L. Determining the EnvironmentaL Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities[M]. England, London:Cranfield University and Defra,2006.
[7] CEDERBERG C, MATTSSON B. Life cycle assessment of milk production-a comparison of conventional and organic farming [J]. Journal of Cleaner Production,2000,8(1):49-60.
[8] THOMASSEN M A, CALKER K J, SMITS M C J, et al. Life cycle assessment of conventional and organic milk production in the Netherlands [J]. Agricultural Systems,2008,96(1-3):95-107.
[9] 秦凤贤.生命周期评价在牛奶生产中的应用研究[J]. 乳业科学与技术,2006(5):224-226.
[10] BERLIN J, SONESSON U, TILLMAN A M. A life cycle based method to minimize environmental impact of dairy production through product sequencing [J]. Journal of Cleaner Production,2007,15(4):347-356.
[11] KAREN A B, JANZEN H H, SHANNAN M L, et al. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study [J]. Agricultural Systems,2010,103(6):371-379.
[12] PETERS G M, ROWLEY H V, WIEDEMANN S, et al. Red meat production in Australia: Life cycle assessment and comparison with overseas studies [J]. Environmental Science & Technology, 2010,44(4):1327-1332.
[13] NATHAN P, RICH P, REBECCA R. Comparative lifecycle environmental impacts of three beef production strategies in the Upper Midwestern United States [J]. Agricultural Systems, 2010,103(6):380-389.
[14] ERZINGER S, DUX D, ZIMMERMANN A, et al. LCA of animal products from different housing system in Switzerland: Relevance of feedstuffs, infrastructure and energy use [A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Denmark, Horsens:Danish Institute of Agricultural Sciences,2003.55-63.
[15] N■EZ Y, FERMOSO J, GARCIA N, et al. Comparative life cycle assessment of beef, pork and ostrich meat: A critical point of view[J]. International Journal of Agricultural Resources, Governance and Ecology,2005,4(2):140-151.
[16] PORITOSH R, DAISUKE N, TAKAHIRO O, et al. A review of life cycle assessment (LCA) on some food products[J]. Journal of Food Engineering,2009,90(1):1-10.
[17] LEINONEN I, WILLIAMS A G, WISEMAN J, et al. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems [J].Poultry Science,2012,91(1):26-40.
[18] FOSTER C, GREEN K, BLEDA M, et al. Environmental Impacts of Food Production and Consumption: A Final Report to the Department for Environment, Food and Rural Affairs [M]. England, London:Manchester Business School,2006. 15-18.
[19] BASSET-MENS C, VAN DER WERF H M J. Environmental assessment of contrasting pig farming systems in France [A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Denmark, Bygholm: Danish Institute of Agricultural Sciences, 2003. 45-54.
[20] BASSET-MENS C, VAN DER WERF H M J. Scenario-based environmental assessment of farming systems: The case of pig production in France [J]. Agriculture Ecosystems and Environment,2005,105(1-2):127-144.
[21] ROY P, ORIKASA T, NEI D, et al. A comparative study on the life cycle of different types of meat [A]. HAUGEN T I. Proceedings of the Third LCA Society Research Symposium [C]. Japan,Nagoya:International House of Japan,2008.74-79.
[22] WIRSENIUS S, HEDENUS F, MOHLIN K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects [J]. Climatic Change,2011,108(1-2):159-184.
[23] THOMAS N, DAVID D, OLIVIER H E, et al. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming [J]. Agricultural Systems,2011,104(3):217-232.
[24] PHONG L T, BOER I J M, UDO H M J. Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta[J]. Livestock Science,2011,139(1-2):80-90.
[25] BREILING M, TATSUO H, MATSUHASHI R. Contribution of Rice Production to Japanese Greenhouse Gas Emissions Applying Life Cycle Assessment as a Methodology [M]. Japan, Tokyo:University of Tokyo,1999.24-29.
[26] ROY P, SHIMIZU N, KIMURA T. Life cycle inventory analysis of rice produced by local processes[J]. Journal of the Japanese Society of Agricultural Machinery,2005,67(1):61-67.
[27] SAKAORAT K, WORANEE P, PHANIDA S, et al. Life cycle assessment of milled rice production: Case study in Thailand[J]. European Journal of Scientific Research,2009,30(2):195-203.
[28] WANG M X, XIA X F, ZHANG Q J, et al. Life cycle assessment of a rice production system in Taihu region, China [J]. International Journal of Sustainable Development & World Ecology,2010,17(2):157-161.
[29] ANDERSSON K, OHLSSON T, OLSSON P. Screening life cycle assessment (LCA) of tomato ketchup: A case study [J]. Journal of Cleaner Production,1998,6(3-4):277-288.
[30] NIAES. Report on the Research Project on Life Cycle Assessment for Environmentally Sustainable Agriculture [M]. Japan,Ibaraki:National Institute for Agro-Environmental Sciences, 2003.83-87.
[31] ANT?魷N A, MONTERO J I, MU?譙OZ P, et al. LCA and tomato production in Mediterranean greenhouses [J]. International Journal of Agricultural Resources Governance and Ecology,2005,4(2):102-112.
[32] WILLIAMS A G, AUDSLEY E, SANDARS D L. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities [A]. WILLIAMS A G. Main Report, Defra Research Project IS0205 [C].England,London:Defra,2006.177-189.
[33] SHIINA T, ROY P, OKADOME H, et al. Life cycle assessment of food supply chain: A case study for inclusion of quality change aspect[A]. JOHN P C, ATTILA E P. Proceedings of the 33rd United States and Japan Cooperative Program in Natural Resources (UJNR) [C]. America,Hawaii: Food and Agriculture Panel,2004. 211-214.
[34] ROY P, NEI D, OKADOME H, et al.Life cycle inventory analysis of fresh tomato distribution systems in Japan considering the quality aspect [J]. Journal of Food Engineering,2008,86(2):225-233.
[35] CARLSSON-KANYAMA A. Climate change and dietary choices-how can emissions of greenhouse gases from food consumption be reduced[J].Food Policy,1998,23(3-4):277-293.
[36] ANT?魷N A, CASTELLS F, MONTERO J I, et al. Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses [J]. Chemosphere,2004,54(8):1225-1235.
[37] MU?譙OZ P, ANT?魷N A, MONTERO J I, et al. Using LCA for the improvement of waste management in greenhouse tomato production[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Danmark,Horsens:Danish Institute of Agricultural Sciences, 2003. 205-209.
[38] ANT?魷N M A, CASTELLS F, MONTERO J I, et al. Most significant substances of LCA to Mediterranean greenhouse horticulture[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector[C]. Danmark,Horsens: Danish Institute of Agricultural Sciences,2003.199-204.
[39] ANDERSSON K, OHLSSON T. Including environmental aspects in production development: A case study of tomato ketchup[J]. LWT-Food Science and Technology,1999,32(3):134-141.
[40] POINT E, TYEDMERS P, NAUGLER C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada [J]. Journal of Cleaner Production,2012,27:11-20.
[41] HUMBERT S, LOERINCIK Y, ROSSI V, et al. Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso) [J]. Journal of Cleaner Production,2009,17(15):1351-1358.
[42] BENNETT R, PHIPPS R, STRANGE A, et al. Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: A life cycle assessment [J]. Plant Biotechnology Journal,2004,2(4):272-278.
[43] HASS G, WETTERICH F, K?魻PKE U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment [J]. Agriculture, Ecosystems and Environment, 2001,83(1-2):43-53.
[44] BRASCHKAT J, PATYK A, QUIRIN M, et al. Life cycle assessment of bread production——a comparison of eight different scenarios[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector[C]. Danmark,Horsens:Danish Institute of Agricultural Sciences,2003. 9-16.
[45] TAKAMOTO Y, MITANI Y, TAKASHIO M, et al. Life cycle inventory analysis of a beer production process[J]. Master Brewers Association of the Americas,2004,41(4):363-365.
[46] KORONEOS C, ROUMBAS G, GABARI Z, et al. Life cycle assessment of beer production in Greece[J]. Journal of Cleaner Production,2005,13(4):433-439.
[47] HOSPIDO A, MOREIRA M T, FEIJOO G. Environmental analysis of beer production [J]. International Journal of Agricultural Resources, Governance and Ecology,2005,4(2):152-162.
[48] 任 辉,杨印生,曹利江.啤酒生产生命周期评价研究[J]. 农业机械学报,2006,37(2):80-83.
[49] ROES A L, PATEL M K. Environmental assessment of a sugar cane bagasse food tray produced by roots biopack-results of a shortcut-life cycle assessment[J]. Journal of Biobased Materials and Bioenergy,2011,5(1):140-152.
[50] ZUFIA J, ARANA L. Life cycle assessment to eco-design food products: Industrial cooked dish case study [J]. Journal of Cleaner Production,2008,16(17):1915-1921.
[51] EKAVALL T, PERSON L, RYBERG A, et al. Life cycle assessment on packaging systems for beer and soft drinks (Environmental Project 399)[M]. Danmark,Copenhagen: The Danish Environmental Protection Agency, Ministry of Environment and Energy,1998.127-139.
[52] MONTE M D, PADOANO E, POZZETTO D. Alternative coffee packaging: An analysis from a life cycle point of view [J]. Journal of Food Engineering,2005,66(4):405-411.
[53] ZABANIOTOU A, KASSIDI E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper[J]. Journal of Cleaner Production,2003,11(5):549-559.
[54] ROSS S, EVANS D. The environmental effect of reusing and recycling a plastic-based packaging system[J]. Journal of Cleaner Production,2003,11(5):561-571.
[55] MOURAD A L, GARCIA E E C, VILELA G B, et al. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction[J]. Resources, Conservation and Recycling,2008,52(4):678-689.
[56] HYDE K, SMITH A, SMITH M, et al. The challenge of waste minimisation in the food and drink industry: A demonstration project in East Anglia, UK[J]. Journal of Cleaner Production,2001,9(1):57-64.
[57] HUMBERT S, ROSSI V, MARGNI M, et al. Life cycle assessment of two baby food packaging alternatives: Glass jars vs. plastic pots[J]. The International Journal of Life Cycle Assessment,2009,14(2):95-106.
[58] SONESSON U, BERLIN J. Environmental impact of future milk supply chains in Sweden: A scenario study[J]. Journal of Cleaner Production,2003,11(3):253-266.
[59] ANTONIO D, PILAR C, FATIMA K, et al.The sustainability of communicative packaging concepts in the food supply chain. A case study: Part 1. Life cycle assessment[J]. The International Journal of Life Cycle Assessment,2011,16(2):168-177.
[60] RAMJEAWON T. Cleaner production in Mauritian cane-sugar factories [J]. Journal of Cleaner Production,2000,8(6):503-510.
[61] HIRAI Y, MURATA M, SAKAIS, et al. Life cycle assessment for foodwaste recycling and management [A]. Proceedings of the Fourth International Conference on EcoBalance [C]. Japan,Tsukuba:Society of Non-Traditional Technology, 2000.313-325.
[62] LUNDIE S, PETERS G M. Life cycle assessment of food waste management options [J]. Journal of Cleaner Production,2005,13(3):275-286.
[63] NYLAND C A, MODAHL I S, RAADAL H L, et al. Application of LCA as a decision-making tool for waste management systems[J]. The International Journal of Life Cycle Assessment,2003,8(6):331-336.
[64] MCCOMAS C, MCKINLEY D. Reduction of phosphorus and other pollutants from industrial dischargers using pollution prevention[J]. Journal of Cleaner Production,2008,16(6):727-733.