田志新,钱先春
(江苏银佳企业集团有限公司技术部,江苏镇江 212000)
随着日常生活及工业生产中,对电的需求不断增加。电网装机容量的不断加大,大批量的电子元件被投入使用,导致大量的谐波电流流入至电网当中,从而对整个电网的服务质量产生影响。因此,需要加强谐波电流的检测、消除以及管理工作,同时将谐波危害降到最低,以提高电网的服务质量。
电力系统中存在的谐波能使电网的电流与电压发生变化。例如:引起荧光灯、计算机和调光灯等相关设备的负载。民用配电系统中的中性线会产生大量的奇次谐波,其中,3次谐波的含量高达40%。在三相配电线路中,相线上3的整数倍谐波在中性线上会产生叠加,导致中性线上的电流值存在超过相线上电流的可能[1]。此外,相同频率的谐波电流与谐波电压也会产生同次谐波的有功功率以及无功功率,从而导致电网电压降低,浪费电网容量。
(1)电容器的谐波危害。当谐波作用于电网时,电容器两端电压增加,此时电容中的电流随之增强,造成电容器的功率损耗增加[2]。例如,膜纸介质电容的谐波损耗功率为0,而谐波损耗为其功率的1.5倍。当谐波量较大并超过电容的最大允许量时,电流所造成的损耗则高于功率的1.5倍,电容温度也会增高,而电容的绝缘介质将加速老化。特别将电容器放进原本就已产生形变的电网中时,还会造成谐波的扩大。此外,因谐波的存在,电压也会产生较大波动,时而产生尖顶波形,这种波形通常会导致局部放电,进而使温度升高造成绝缘介质加速老化,电容寿命大幅下降。
(2)对电缆的危害。电缆的电阻、系统母线以及线路感抗与系统是串联的,提高功率因数所使用的线路容抗与电容器和系统并联,在一定数值的电容与电感皆有发生谐振的可能。另外,由于谐波次数上升的频率较高,同时电缆导体的截面面积越大,趋肤效应则越明显,进而使得导体的交流电阻增大,导致电缆允许通过的电流变小。
(3)对低压开关设备的危害。对于配电用断路器而言,热磁型的断路器由于导体的铁耗增加引起发热,会使脱扣电流与额定电流降低。全电磁型的断路器易受谐波电流的影响使铁耗增加而导致发热,同时会使脱扣困难,主要原因是由于涡流与对电磁铁的影响,而且谐波的次数越高,影响越大。电子型的断路器,谐波的出现也将使其额定电流降低,尤其是检测峰值的电子断路器,其额定电流降低的更多。因此,对于上述3种配电断路器均可能由于谐波的存在而产生误动作。
该检测方法在国内被广泛地应用,但缺点是造价较高,且对频率及温度的反应较为敏感,容易造成较大误差,其误差将对质量产生影响。近年来正在进行研究的人工神经网络相对于模拟电路虽有较大优势,但其硬件实现仍存在困难。
根据国内电力系统谐波现状的分析比较,现阶段主要采用傅里叶转换方法进行检测,该方法主要适用于数字领域。缺点是进行采样的信号长度具有一定限制,会导致对无限长度的信号无法进行采样。
小波变换法相对于以上两种方法应用的更为广泛,其是在语音识别与合成、信号分析、图像处理与分析以及自动控制等领域均得到了应用。该方法根据谐波的特点,制定了多种检测的方式,小波变换弥补了上述提到的傅里叶变化无法检测小波变换的不足,该方法可通过对谐波进行离散采样,然后利用小波变换的特点对采集到的数字信号进行处理,以确保实验检测的精准度。小波变换的优势明显,可实现自动调焦的功能,同时也可避免微小波动所带来的影响,还可追踪一些较为复杂的信号。因此,小波变换检测在应用领域得到了广泛认可。
供电企业对电力系统谐波的处理刻不容缓。治理好谐波不仅能抑制和治理谐波污染,还可提高企业的供电质量[3]。通常电网谐波来自3个方面:(1)输送电力的系统产生谐波。(2)发电源质量低产生谐波。(3)用电设备产生的谐波。在这3者中,用电设备产生的谐波较多。谐波需要一个综合的治理过程,首先需要在源头抓起,注重加强设备管理,以防谐波的出现;其次需要各方提高对谐波危害的认识,要积极进行谐波的治理,以防止产生灾害。
一方面要完善对现阶段已有谐波源用户设备了解,加强谐波治理的宣传工作,使用户主动进行整治。对于不合格者,应限期整治,对于未按时完成整治的则停止供电。对于新建或扩容的非线性用户在申请用电以及进行规划设计时,要求其相关设备必须按照用电管理部门的相关规定进行配备,务必达到相关设备的参数要求和运行特点。在用户接电使用前,需保证消谐波装置达到使用标准,并经检测后才可进行供电。另外要选择合理的变压器、电动机和电抗器等相关设备,保证其接近满负荷运行,尽可能使感应电动机同步运行、限制用电设备空载运行,使得电动机软启动而非直接启动,且要使电抗器不饱和运行,在源头上防止谐波的产生并进行及时处理。
(1)采用无源、有源滤波装置,充分抑制非线性负载产生的谐波,消除由此而产生的谐波污染。无源滤波器是利用电感、电容谐振的相关原理进行“吸收”及“阻止”谐波,限制谐波进入公用电网,以确保低水平的电压畸变率。按照接线的方式无源滤波器可分为并联滤波、串联滤波以及低通滤波。并联滤波既能滤除多次谐波,又可对系统进行无功补偿。串联接入的滤波器主要是滤除3 N次谐波,又称为零序性质的谐波。低通滤波器主要是治理高次谐波。在电源接入端测量出存在谐波污染时,可安装阻波线圈拒绝其产生,在有限制的情况下可使用并联电容器的方法将谐波揽入“怀中”,防止其扩散产生威胁。有源滤波器的本质是一个功率较大的谐波产生器,会通过谐波采样装置将其源头发出的谐波进行采集,随后完整地将其进行复制,再将相关谐波反方向接入到谐波源头的入网点,用以产生与原谐波方向相反、大小相等的谐波,起到与原谐波相互抵消的作用。该大功率谐波器产生的谐波会跟随污染源的变化而相应变化,其接入方式也有串联有源滤波器和并联有源滤波器之分,是一种新型的滤波装置,功耗、费用较高,但效果较好。
(2)利用无功补偿进行谐波的治理,主要有集中和就地无功补偿两种。并联电容器组虽能有效的调节波动电压以及提高功率因数,但在某些情况下,当参数不符合条件时,会产生谐波放大作用,必须进行避免。改变与电容器串联的阻流电抗器参数、减少补偿电容器投入数量或增加补偿网络以及将电容器组的某一支路改变成滤波器等等,均可有效消除并联电容器对谐波的放大现象。
(3)采用静止调相机、动态电压恢复器、固态电子转换开关和不间断稳压电源等相关装置,用以调节电压和系统功率因数、补偿电源电压闪变和波动、克服传统机械开关反应慢等弊端,保证对重要客户的可靠供电,消除对电网造成的谐波污染[4]。
合理应用电能质量测试仪能够大幅提高电能质量的检测及治理水平。同时还可建立先进可靠的电能质量检测网络,及时反映和分析电网的电能质量水平,找出电网中造成电能质量低下的谐波相关源头和故障原因。采取相应的治理措施,保证电网稳定、安全并经济的运行,促进整个电力系统的稳步发展。
[1]吕润馀.电力系统高次谐波[M].北京:中国电力出版社,1998.
[2]陈伟华.电磁兼容实用手册[M].北京:机械工业出版社,1998.
[3]赵军军.一种新的电网谐波检测系统[J].电子科技,1998(2):53-55.
[4]席志红,李娅,边峦剑.基于混沌振子系统的电力谐波检测研究[J].电子科技,2010,23(7):74-76.