◎湖南省桃江县桃花江小学四年级130班 刘一如
作图分析题意,努力去寻找条件与条件、问题与条件之间的相等关系或相差关系或倍数关系等,这是我解答应用题又快又对的方法。
例一 有10个书架上放着同样多的书,如果从每个书架中取出20本书,那么10个书架剩下的书的总数等于原来8个书架的总和。原来每个书架有多少本书?
根据题意画出线段图(如上图)就能找到了两个关系:拿走的书的总数等于减少的10-8=2(个)书架的书,这个等量关系同时还是一个倍数关系:拿走的部分=2个书架上的书,这就很容易求出每个书架上的书是20×10÷(10-8)=20×10÷2=100(本)。
例二 一次数学试卷上有两道智力题。三(1)班52位同学中,做对第一题的有41人,做对第二题的有26人,每人至少做对了一道题。两道题都做对的有多少人?
根据题意画出数量关系图(如上图),看图可知,左边部分与中间部分的和是做对第一题的41人,右边部分与中间部分的和是做对第二题的26人,中间重叠部分是要求的两道题都做对的人,整个方框为全班52人。这里面有多个相等关系:左边的+右边的+中间的=全班人数;左边的=全班的52-26,右边的=全班的52-41,根据这些等量关系就可以求出两道题都做对的人数,即中间的=全班的-左边的-右边的=52-(52-26)-(52-41)=15(人)。
其实,这道题找到一个相差关系来解更容易。从图上可以看出,41人里面包含了中间部分,26人里面也包含了中间部分,那两者的和比全班人数就多一个中间部分,即两题都做对的有41+26-52=15(人)。
作图找关系,这是我解答应用题的心得。你也试试看。