梁冬科, 白小涓
骨质疏松和动脉硬化共同机制的研究进展
梁冬科1, 白小涓2*
(1中国医科大学附属第一医院老年病科, 沈阳 110001;2中国医科大学附属盛京医院老年病干诊科, 沈阳 110004)
骨质疏松和动脉硬化都属于受多因素影响,伴随着衰老的退行性疾病。越来越多的研究证明二者之间存在联系。近年来,有许多关于骨质疏松和动脉硬化共同发病机制的研究,并提出骨-血管轴的概念,即骨质疏松和血管钙化。热点机制研究主要包括RANK/RANKL/OPG系统、氧化的脂质、成纤维细胞生长因子23/Klotho轴、胎球蛋白A和循环的钙化细胞,本文对其进行综述。
骨密度; 骨质疏松; 动脉硬化
骨质疏松和动脉硬化都属于受多因素影响,伴随着衰老的退行性疾病。一些横向和纵向的人群研究都证明二者之间存在联系[1,2]。另外,骨密度低下者,发生心血管事件的风险增加[3]。反之,患有心血管病者,发生骨折的风险亦增加[4]。近年来,有许多关于骨质疏松和动脉硬化共同发病机制的研究,并提出骨-血管轴的概念[5,6],即骨质疏松和血管钙化。热点机制研究主要包括RANK/RANKL/OPG系统、氧化的脂质、成纤维细胞生长因子23/Klotho轴、胎球蛋白A和循环的钙化细胞,本文对其进行综述。
核因子кB受体活化因子(receptor activator of nuclear factor NF-κB,RANK)属于肿瘤坏死因子受体家族成员,在破骨细胞前体和破骨细胞表面上表达。核因子κB受体活化因子配体(receptor activator of nuclear factor NF-κB ligand,RANKL)属于肿瘤坏死因子家族成员,成骨细胞、T淋巴细胞、B淋巴细胞和巨核细胞都可以生成RANKL。RANK与RANKL结合后被激活,通过细胞内信号传导系统促进破骨细胞的分化和成熟,激活破骨细胞,促进骨吸收。骨保护素(osteoprotegerin,OPG)是一种可溶性糖蛋白,成骨细胞、骨髓基质细胞可以分泌OPG。OPG与RANKL具有高度亲和性,因此可以阻止RANKL与RANK结合,从而抑制破骨细胞的分化和活性,抑制骨吸收。RANK/RANKL/OPG系统在调节破骨细胞分化成熟以及活性方面发挥了重要作用。
RANK/RANKL/OPG系统在血管内皮细胞、血管平滑肌细胞同样有表达,在血管钙化过程中发挥重要作用[7]。RANKL通过诱导人主动脉内皮细胞生成骨形成蛋白2和减少人主动脉平滑肌细胞内的基质γ-羧基谷氨酸蛋白使血管发生钙化[8]。OPG与血管钙化、动脉粥样硬化、心血管病的关系目前尚存在争议。体外实验发现OPG可以通过增加胰岛素样生长因子1受体的表达和活性,抑制血管钙化[9]。然而,临床研究却提示血清OPG水平升高与血管钙化、冠心病有关,可以作为心血管病危险因素之一,以及人群中心血管病和死亡率的预测指标[10],另外,近期研究发现高血压患者血浆OPG水平高于血压正常者,OPG可以作为监测血管内皮功能和预测心血管病的生物学标志物[11]。以上研究结果提示OPG水平升高可能是一种机体自我保护机制。
脂质在血管内皮沉积引起动脉粥样硬化,引起早发性和进展迅速的心脑血管和周围血管病变。某些家族性血脂异常可于青春期前发生冠心病,甚至心肌梗死。近年研究发现,氧化的脂质可导致骨代谢异常,引起骨质疏松症,其可能机制如下:(1)氧化的脂质可以激活并诱导T淋巴细胞产生RANKL[12],促进破骨细胞的分化和成熟,激活破骨细胞,促进骨吸收。(2)氧化的脂质可以减弱成骨细胞的分化和增殖,并刺激成骨细胞凋亡,使骨形成减少[13]。(3)氧化的脂质作用于成骨细胞,抑制无机磷酸盐信号和无机磷酸盐诱导的矿化作用[14]。
成纤维细胞生长因子23(fibroblast growth factor-23,FGF-23)是一种参与血磷调节的激素,由骨组织产生,作用于肾脏,控制磷的排泄和维生素D的生物合成。Klotho蛋白是一种膜蛋白,参与FGF-23的信号传导,Klotho基因缺乏可使FGF-23与其受体的亲和力下降,导致FGF-23无法调节磷的代谢[15]。FGF-23/Klotho轴通过以上机制间接影响骨代谢。近期的体外实验研究提示FGF-23/Klotho轴也可以直接作用于骨组织,抑制骨组织矿化[16]。
人群研究发现FGF-23水平与动脉僵硬度和血管内皮功能紊乱[17]以及严重的全身动脉硬化[18]显著相关。在慢性肾脏疾病和心血管病患者中,FGF-23水平独立于心血管危险因素和钙磷水平,与全因死亡率和心血管事件的风险增加有关[19,20]。但是,在非慢性肾脏疾病和非心血管病患者中,FGF-23水平和心血管病病死率无关[21]。然而,动物实验结果提示FGF-23水平升高与动脉硬化的起始和进展不直接相关,而磷水平升高可能起着重要作用,因为磷水平升高总是与血管钙化有关,不论FGF-23水平如何[5]。FGF-23水平升高可能是为了保护骨组织、肾脏和血管,减少高磷血症对它们的不利影响[22]。高磷血症相关的血管细胞分化和钙化的机制可能是通过磷酸钙晶体诱导骨形成蛋白和骨桥蛋白的合成[23]。
胎球蛋白A是体内最强大的抑制矿化的蛋白质,主要在肝脏合成,在血液循环中与钙、磷等矿物质前体结合形成复合体,即钙-胎球蛋白颗粒,维持矿物离子的稳定,不在肌肉、血管等其他软组织沉积,最终在骨、牙齿的胶原纤维特定位置沉积[24]。无论哪种动脉粥样硬化斑块钙化的机制,如矿物质内环境紊乱、血脂异常、炎症、细胞凋亡、基质矿化或者骨生成,胎球蛋白A似乎能抵制许多上述机制,是矿化作用的系统调节者[25]。因此,胎球蛋白A的异常可能是骨质疏松和动脉硬化的共同发病机制的一种。动物实验表明胎球蛋白A可以防止血管钙化[26]。另一项针对心血管疾病患者的研究表明循环胎球蛋白A水平升高与高脂血症和代谢综合征的特征有关[27]。一些临床研究发现心血管疾病风险增加与循环胎球蛋白A水平升高有关[28],以上研究结果提示循环胎球蛋白A水平的升高可能是一种机体自我保护机制。
骨髓的间充质和造血单位可以产生骨原细胞,骨重建的关键细胞成骨细胞和破骨细胞就分别起源于骨髓间充质干细胞和造血干细胞,这些骨原细胞进入血液循环后构成循环钙化细胞,主要包括以下类型:(1)间充质骨祖细胞,起源于间充质干细胞,抗原表型有CD44+、CD105+、CD73+、CD90+、CD34-、CD45-和CD14-;(2)CD34+造血祖细胞,起源于造血干细胞,抗原表型有CD34+、CD45+、骨钙素(osteocalcin,OC)+和碱性磷酸酶(alkaline phosphatase,AP)+;(3)内皮祖细胞,起源于造血干细胞,抗原表型有CD34+、血管内皮生长因子受体+、OC+和AP+;(4)骨髓钙化细胞,起源于造血单位,抗原表型有CD14+、CD68+、CD45+、CD34-、CD44-、CD90-、CD29-、OC+和AP+。通过血液运输,这些具有成骨潜能的细胞成为骨重建和血管钙化的主要调节者[6]。
临床研究探索了不同循环钙化细胞的作用,发现骨抗原(例如AP和OC)在CD34+细胞上的表达增加与骨质疏松[29]和血管僵硬度增加[30]有关,Pirro 等发现骨质疏松患者中AP+细胞减少,AP+/CD34+、OC+和OC+/CD34+细胞增加,说明AP+细胞的减少与骨密度下降是密切相关的,AP+/CD34+细胞可能代表由骨髓动员的有助于骨形成的未成熟细胞[29]。Pirro等还发现OC+/CD34+细胞增加与脉搏波速度加快有关[30]。骨质疏松和血管钙化通常与衰老有关,并且可以在一定情况下加速二者的发展,如慢性肾脏疾病、糖尿病和慢性阻塞性肺疾病[31-33]。而炎症反应在这些疾病的发生发展过程中起到了非常重要的作用,可以同时导致骨质疏松和血管钙化[31,34,35]。因此,可以推断炎症反应是连接骨质疏松、循环钙化细胞和血管钙化改变的关键点。
目前在治疗学上已经发现了二者之间的联系。例如,他汀类调脂药[36]和双磷酸盐类药物[37]对骨质疏松和动脉硬化都有影响。另外,Kuroda等报道了使用CD34+细胞/内皮祖细胞治疗骨折成功的案例[38]。因此,骨质疏松和动脉硬化存在共同的发病机制,对其进行进一步研究,可以为骨质疏松和动脉硬化性疾病的防治寻找新的靶点。
[1] Hyder JA, Allison MA, Barrett-Connor E,Bone mineral density and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis, Abdominal Aortic Calcium Study[J]. Atherosclerosis, 2010, 209(1): 283-289.
[2] Collins TC, Ewing SK, Diem SJ,Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men[J]. Circulation, 2009, 119(17): 2305-2312.
[3] Szulc P, Samelson EJ, Kiel DP,Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study[J]. J Bone Miner Res, 2009, 24(12): 2023-2031.
[4] Sennerby U, Melhus H, Gedeborg R,Cardiovascular diseases and risk of hip fracture[J]. JAMA, 2009, 302(15): 1666-1673.
[5] Zoppellaro G, Faggin E, Puato M,Fibroblast growth factor 23 and the bone-vascular axis: lessons learned from animal studies[J]. Am J Kidney Dis, 2012, 59(1): 135-144.
[6] Fadini GP, Rattazzi M, Matsumoto T,Emerging role of circulating calcifying cells in the bone-vascular axis[J]. Circulation, 2012, 125(22): 2772-2781.
[7] Ndip A, Williams A, Jude EB,The RANKL/ RANK/OPG Signaling Pathway Mediates Medial Arterial Calcification in Diabetic Charcot Neuroarthropathy[J]. Diabetes, 2011, 60(8): 2187-2196.
[8] Osako MK, Nakagami H, Koibuchi N,Estrogen inhibits vascular calcificationvascular RANKL system: common mechanism of osteoporosis and vascular calcification[J]. Circ Res, 2010, 107(4): 466-475.
[9] Di Bartolo BA, Schoppet M, Mattar MZ,Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification[J]. Cardiovasc Res, 2011, 91(3): 537-545.
[10] Lieb W, Gona P, Larson MG,Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality[J]. Arterioscler Thromb Vasc Biol, 2010, 30(9): 1849-1854.
[11] Stępień E, Wypasek E, Stopyra K,Increased levels of bone remodeling biomarkers (osteoprotegerin and osteopontin) in hypertensive individuals[J]. Clin Biochem, 2011, 44(10-11): 826-831.
[12] Graham LS, Parhami F, Tintut Y,Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss[J]. Clin Immunol, 2009, 133(2): 265-275.
[13] Almeida M, Ambrogini E, Han L,Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton[J]. J Biol Chem, 2009, 284(40): 27438-27448.
[14] Mazière C, Savitsky V, Galmiche A,Oxidized low density lipoprotein inhibits phosphate signaling and phosphate-induced mineralization in osteoblasts. Involvement of oxidative stress[J]. Biochim Biophys Acta, 2010, 1802(11): 1013-1019.
[15] Nakatani T, Sarraj B, Ohnishi M,genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23)-mediated regulation of systemic phosphate homeostasis[J]. FASEB J, 2009, 23(2): 433-441.
[16] Shalhoub V,Ward SC, Sun B,Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization[J]. Calcif Tissue Int, 2011, 89(2): 140-150.
[17] Mirza MA, Larsson A, Lind L,Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community[J]. Atherosclerosis, 2009, 205(2): 385-390.
[18] Mirza MA, Hansen T, Johansson L,Relationship between circulating FGF23 and total body atherosclerosis in the community[J]. Nephrol Dial Transplant, 2009, 24(10): 3125-3131.
[19] Seiler S, Reichart B, Roth D,FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment[J]. Nephrol Dial Transplant, 2010, 25(12): 3983-3989.
[20] Isakova T, Xie H, Yang W,Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease[J]. JAMA, 2011, 305(23): 2432-2439.
[21] Taylor EN, Rimm EB, Stampfer MJ,Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease[J]. Am Heart J, 2011, 161(5): 956-962.
[22] Razzaque MS. Phosphate toxicity: new insights into an old problem[J]. Clin Sci (Lond), 2010, 120(3): 91-97.
[23] Sage AP, Lu J, Tintut Y,Hyperphosphatemia- induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells[J]. Kidney Int, 2011, 79(4): 414-422.
[24] 吕厚辰, 唐佩福. 胎球蛋白A在骨矿化早期的抑制作用[J]. 解放军医学院学报, 2013, 34(1): 98-100.
[25] Jahnen-Dechent W, Heiss A, Schafer C,Fetuin-A regulation of calcified matrix metabolism[J]. Circ Res, 2011, 108(12): 1494-1509.
[26] Westenfeld R, Schäfer C, Krüger T,Fetuin-A protects against atherosclerotic calcification in CKD[J]. J Am Soc Nephrol, 2009, 20(6): 1264-1274.
[27] Parker BD, Schurgers LJ , Brandenburg VM,The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study[J]. Ann Intern Med, 2010, 152(10): 640-648.
[28] Fisher E, Stefan N, Saar K,Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study[J]. Circ Cardiovasc Genet, 2009, 2(6): 607-613.
[29] Pirro M, Leli C, Fabbriciani G,Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis[J]. Osteoporos Int, 2010, 21(2): 297-306.
[30] Pirro M, Schillaci G, Mannarino MR,Circulating immature osteoprogenitor cells and arterial stiffening in postmenopausal osteoporosis[J]. Nutr Metab Cardiovasc Dis, 2011, 21(9): 636-642.
[31] Khosla S. The bone and beyond: a shift in calcium[J]. Nat Med, 2011, 17(4): 430-431.
[32] Sabit R, Bolton CE, Edwards PH,Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2007, 175(12): 1259-1265.
[33] Demer L, Tintut Y. The bone-vascular axis in chronic kidney disease[J]. Curr Opin Nephrol Hypertens, 2010, 19(4): 349-353.
[34] Hjortnaes J, Butcher J, Figueiredo JL,Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation[J]. Eur Heart J, 2010, 31(16): 1975-1984.
[35] New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification[J]. Circ Res, 2011, 108(11): 1381-1391.
[36] Hughes A, Rogers MJ, Idris AI,A comparison between the effects of hydrophobic and hydrophilic statins on osteoclast functionand ovariectomy-induced bone loss[J]. Calcif Tissue Int, 2007, 81(5): 403-413.
[37] Okamoto K, Inaba M, Furumitsu Y,Beneficial effect of risedronate on arterial thickening and stiffening with a reciprocal relationship to its effect on bone mass in female osteoporosis patients: a longitudinal study[J]. Life Sci, 2010, 87(23-26): 686-691.
[38] Kuroda R, Matsumoto T, Miwa M,Local transplantation of G-CSF-mobilized CD34+cells in a patient with tibial nonunion: a case report[J]. Cell Transplant, 2010, 20(9): 1491-1496.
(编辑: 周宇红)
Common mechanism of osteoporosis and arteriosclerosis: a review of recent advances
LIANG Dong-Ke1, BAI Xiao-Juan2*
(1Department of Gerontology and Geriatrics, First Affiliated Hospital, China Medical University, Shenyang 110001, China;2Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang 110004, China)
Osteoporosis and arteriosclerosis are both multifactorial, degenerative diseases that accompany aging. Many studies have suggested associations between osteoporosis and arteriosclerosis. In recent years, there are many studies investigating the common pathogenetic pathways of osteoporosis and arteriosclerosis. The meaning of bone-vascular axis is the associations between osteoporosis and vascular calcification. The hot research topics include RANK/RANKL/OPG system, oxidized lipids, fibroblast growth factor-23/Klotho axis, fetuin-A, and circulating calcifying cells. In this paper, we summarized the above pathogentic pathways.
bone mineral density; osteoporosis; arteriosclerosis
(2007CB507405, 2013CB530804),(No.2007225004).
R592; R59; R543.5
A
10.3724/SP.J.1264.2013.00088
2013-04-03;
2013-04-25
国家重点基础研究发展计划基金(2007CB507405; 2013CB530804); 辽宁省科学技术厅课题基金(No.2007225004)
白小涓, Tel: 024-83282770, E-mail: xjuanbai@hotmail.com