周建波,曾维顺,曹嘉麟,韩杰,郭晓丹
吉林大学地球科学学院,长春 130061
中国东北地区的构造格局与演化:从500Ma到180Ma
周建波,曾维顺,曹嘉麟,韩杰,郭晓丹
吉林大学地球科学学院,长春 130061
中国东北变质基底为由含矽线石榴片麻岩、角闪斜长片麻岩、石墨大理岩和各种长英质片麻岩组成的孔兹岩系。采自额尔古纳、兴安、佳木斯和兴凯地块的矽线石榴片麻岩样品的锆石U-Pb测年均指示高级变质发生在500Ma左右。来自松辽地块古生代沉积物碎屑锆石的证据也表明约500Ma构造岩浆事件的存在。跨越整个中国东北不同地块的泛非期高级变质岩形成了超过1 300km北西向展布的晚泛非期“中国东北孔兹岩带”,以顺时针p/T轨迹的孔兹岩带与同期岩浆杂岩共同构成了一巨型的约500Ma前后的造山带,笔者这里命名为“中国东北早古生代造山带”。这证明了中国东北各地块在500Ma之前已经拼合,并与西伯利亚克拉通具有构造亲缘性,曾是晚泛非期(500Ma)西伯利亚南缘Sayang-Baikal造山带的组成部分。450Ma之后,已经拼合的中国东北地块群从西伯利亚裂解,向南朝现今的中国东北漂移;230Ma前后,东北地块群沿索伦—西拉沐伦—长春缝合带与华北板块碰撞;210~180Ma,由于太平洋板块的俯冲导致佳木斯地块与西部松辽地块最终拼贴,沿佳木斯—兴凯地块西缘和南缘形成一弧形高压带(包括佳木斯—兴凯地块西缘黑龙江蓝片岩带和佳木斯—兴凯地块南缘长春—延吉带),这里简称“吉林—黑龙江高压变质带”,之后东北地区进入了环太平洋构造域演化阶段并持续至今。
中国东北早古生代造山带;索伦—西拉沐伦—长春缝合带;吉黑高压变质带;东北复合地块;大地构造学
中国东北及其邻近地区,包括俄罗斯远东地区,传统上被认为是中亚造山带的最东端,位于华北板块和西伯利亚板块之间[1-8](图1)。东北地区则主体夹持于西伯利亚板块和华北板块之间,东部为被环太平洋增生带包围的一系列拼贴而成的微陆块[8-14]。东北地区大地构造格局自东向西包括完达山增生杂岩带、佳木斯—兴凯地块、中部的兴安和松辽地块以及西部额尔古纳地块,分割这些地块的边界断裂分别为俄罗斯远东(Primoria)断裂、黑龙江—延吉断裂,贺根山—黑河断裂、新林—喜贵图断裂以及索伦—西拉沐伦—长春断裂[12,15-17](图1)。
前人曾针对该区进行了包括构造划分和演化,沉积学,岩浆活动,构造变形,古生物地理学,古地磁学等多方面的研究[3-5,13,14-21]。然而,直到目前尚有许多重要地质问题相互矛盾,需要进一步认识和提高认识水平。本文重点关注4个重大地质问题:1)中国东北的泛非期变质-岩浆事件的存在标志和证据;2)华北板块和西伯利亚板块的碰撞时间和缝合线位置;3)吉黑高压带的形成及其与太平洋板块俯冲的关系;4)中国东北及邻近地区地壳增生与构造演化特征。上述地质问题的提出和初步研究成果,对中国东北的构造背景、中亚造山带的构造演化和环太平洋带叠加转换的关系等均具有重要的意义。
佳木斯地块是中亚造山带在中国东北的一个重要构造单元[3],东部延伸至那丹哈达地带,西南被牡丹江缝合带截断,南部为索伦—西拉沐伦—长春缝合带。兴凯地块曾被普遍认为其北部延伸至我国东北的佳木斯地区,并继续北延到俄罗斯的布列亚地块,简称为兴凯—佳木斯—布列亚地块[1,4,22]。然而,Shao等[23]和 Ren等[5]曾认为兴凯板块是外来地体,与华南板块有密切的关系[24-25]。Oh 等[26]和Ishiwatari[27]进一步阐述了这一观点,认为秦岭—大别—苏鲁高压—超高压带穿过朝鲜半岛延伸至中国东北的延吉地区。上述论述意味着兴凯地块是华南板块的组成部分。
佳木斯地块主要包含4个岩石组合:1)麻山群,是在早古生代(约500Ma)产生的变质的麻粒岩相[28-29];2)变形的早古生代花岗岩,也遭受了泛非期变质作用的改造[8-9,13,30-31];3)未变形二叠纪花岗岩[28];4)黑龙江杂岩,为以蓝片岩为标志的增生杂岩,并在晚三叠世—早侏罗世发生绿帘-蓝片岩相变质[14]。麻山群主体由一顺时针p/T轨迹的孔兹岩系变质沉积岩组成[32-33],p/T轨迹温度峰值可达850℃、压力达到0.74GPa的麻粒岩相[32]。但是在佳木斯地块北部(图1,2),只达到0.6~0.7 GPa和500~550℃的角闪岩相[22]。麻山群最早被认为是在早太古代形成的,但SHRIMP锆石U-Pb年龄表明,最古老的原岩是在中元古代,而复杂变质作用发生在早古生代(约500Ma)[28-29]。
图1 东北及俄罗斯远东地区构造地质单元划分简图(据文献[14]修改)Fig.1 Tectonic sub-divisions of Northeast China and Far East Russia(modified from reference[14])
兴凯地块被认为是由一个前寒武纪变质基底组成,被古生代到中生代的碳酸盐岩、碎屑岩以及火山岩覆盖[2,23,35-38]。在中国地区的兴凯地块只有3个小部分(图2),其中最东部的出露点位于虎头地区。区域地质图[39]上呈现出向西变质程度不断降低的麻粒岩相-角闪岩相的变质。虎头地区的岩石形成一个高级变质带,围绕兴凯湖,位于中国东北和俄罗斯远东地区的边界。这些岩石已被视为构成地质图中麻山“群”的一部分,被认为形成在晚太古代[39-40],但没有进行进一步的年代学工作。
最新研究的数据[15-16,34]表明,兴凯地块由矽线堇青片麻岩、碳酸盐岩、长英质片麻岩组成,为典型孔兹岩系。采自虎头杂岩的矽线石榴片麻岩的变质边部锆石平均加权206Pb/238U年龄为(490±4)Ma,而该样品的核部岩浆锆石206Pb/238U加权平均年龄为610~934Ma。虎头杂岩中石榴花岗片麻岩的岩浆锆石平均加权206Pb/238U年龄为522Ma和(515±8)Ma,然而锆石中变质边缘记录的206Pb/238U年龄为510~500Ma[15-16]。这些年龄与来自佳木斯地块的石榴片麻岩相似[28]。
图2 中国东北早古生代造山带分布简图(据文献[34]修改)Fig.2 Simplified geological map of part of NE China,showing the distribution of the NE China khondalite belt and NE China Early-Paleozoic orogen(modified from reference[34])
笔者最近研究的该区变质和碎屑锆石年龄数据已分别列于图3。其中图3a中包括佳木斯地块的麻山群和兴凯地块的虎头杂岩样品共186次分析。这些数据基本是谐和年龄,年龄区间为480~1 800 Ma(图3a)。其中101次锆石的分析结果分布在500Ma左右,得到的加权平均年龄206Pb/238U为(500±3)Ma(MSWD=0.31)。这些数据显示2个地块的高级变质都发生在这个时间。85个较老的数据介于520~1 800Ma,峰值为695Ma。这些变质锆石数据表明,兴凯地块中的虎头杂岩记录了明确的早古生代岩浆和变质事件,并与西部佳木斯地块麻山群的年龄相吻合。来自兴凯地块矽线石榴片麻岩中较老的核部锆石年龄证明其原岩形成于新元古代,与佳木斯地块的麻山群基本相同[29]。这些数据证实,兴凯地块与毗邻佳木斯地块具有明显的构造亲缘性,而与华南板块没有明显的亲缘关系。
松辽地块位于中国东北的中部(图1,2),区域范围包括贺根山—黑河断裂以东、黑龙江高压蓝片岩带以西、西拉沐伦河—长春缝合线以北的广大地区,并具体划分为中部的松辽盆地,东北部的小兴安岭和东部的张广才岭等。
松辽盆地分布面积约26万km2,是中国最重要的储油盆地。根据来自许多钻孔的资料,松辽盆地的基底主要由花岗岩、片麻岩和古生代沉积地层(包括砂岩,石灰岩,千枚岩,板岩和变质岩)组成。目前一种观点认为,松辽地块存在前寒武纪变质基底,由于数据显示分布在松辽盆地南部的3个变形花岗岩(片麻岩)样品(钻孔样品)的锆石U-Pb测年结果约1.8Ga[41-42],证明了该地块应存在前寒武纪变质基底[41]。然而,Wu 等[30,43]认为松辽地块,包括松辽盆地、张广才岭和小兴安岭是一个年轻的造山带。同时由于上述采自松辽地块南部的前寒武纪样品多分布在西拉沐伦河—长春断裂附近,因此对这些样品是来自华北板块还是松辽地块本身还存在较大争议[30,43]。
图3 佳木斯—兴凯地块变质基底SHRIMP锆石U-Pb年龄(据文献[16,28-29,34]修改)Fig.3 SHRIMP zircon U-Pb ages from the Mashan and Hutou complexes in the Jiamusi-Khanka block
幸运的是,在松辽地块北部出露有变质基底岩石(图2),主要为高级变质片麻岩和古生代地层(包括寒武—泥盆系和石炭—二叠系的岩石)。其中变质沉积岩由云母片岩、千枚岩、板岩、石英岩和变质砂岩组成,与松辽盆地下部钻孔资料所获得的岩性相似[30,43]。笔者将来自松辽地块北部铁力地区变质沉积岩的4个样品的年龄区间(501~2 690Ma)分为4组:2 071~2 690Ma,峰值为2 585Ma;1 776~1 997Ma,峰值为1 890Ma;719~991Ma,峰值为800Ma;501~592Ma,峰值为515Ma[44](图4)。其中年龄为501~592Ma的锆石占绝对优势,其515Ma的峰值年龄与佳木斯地块麻山群获得的锆石年龄相一致[28-29]。最近,更多来自张广才岭的约500Ma年龄被报道出来[45-48]。Liu 等[45]认为伊春地区的花岗闪长岩、花岗片麻岩LA-ICPMS锆石年龄为(508±15)Ma;来自铁力地区的花岗闪长岩、花岗岩的年龄(499±1)Ma;张广才岭东部伊春的碱长花岗岩年龄(471±3)Ma。这些松辽地块的数据与中亚造山带其他地区以及中国东北其他地块所得到的年龄相一致[43-44,46-47]。但是,松辽地块的高级变质时代还有待被确定。
图4 松辽地块铁力地区变质基底的LA-ICPMS锆石UPb年龄(据文献[44]修改)Fig.4 LA-ICPMS zircon U-Pb ages from the Tieli basement rocks in the Songliao block
兴安地块位于贺根山—黑河断裂以西、新林—喜贵图断裂北东、西拉沐伦河—长春缝合带以北的楔形区域 (图1,2)。兴安地块岩石主要包括4个系列:“兴华渡口群”变质杂岩(兴华渡口杂岩),早古生代辉长岩和花岗岩,古生代地层以及中生代、新生代地层和火山岩[30,39,49-53]。兴华渡口杂岩由矽线石片麻岩、大理岩、长英质片麻岩、角闪岩组成,在传统上被认为是晚太古代到古元古代、高绿片岩相—高角闪岩相的变质岩[39,54-55]。但最近SHRIMP测年表明,兴华渡口杂岩的斜长角闪片岩的年龄为(506±10)~(547±46)Ma[56],石英片岩碎屑锆石年龄为1.0~1.2,1.6~1.8和2.5~2.6Ga[56-57]。花岗岩类包括遭受强烈变形的花岗岩类年龄为460~500Ma,与兴华渡口杂岩的变质有关[43,49-50,53,58]。另外还存在大量的未变形的中生代花岗岩[30,51-52],分布在整个地区。
根据最近的研究成果,兴华渡口杂岩是由矽线石榴片麻岩、角闪斜长片麻岩、大理岩和长英质片岩组成的孔兹岩系,变质程度可达高角闪岩—麻粒岩相[59]。矽线石榴片麻岩样品LA-ICPMS碎屑锆石U-Pb测年得到的加权平均年龄为(494±2)Ma(MSWD=0.06)。这些锆石的 Th/U值为0.01,表明它们记录了高级变质的年龄。其他来自兴安地块变质基底的角闪斜长片麻岩、长英质片岩的锆石UPb年龄区间为(493±6)~(2 800±18)Ma[59](图5)。27次分析得到的加权平均206Pb/238U年龄为(494±1)Ma(MSWD=0.48)。其他74次分析得到的年龄为620~1 000Ma,峰值年龄为770和950 Ma。另外7颗锆石的207Pb/206Pb谐和年龄为(1 496±23)~(2 791±18)Ma。这些锆石具有高的Th/U值(0.37~1.1),证明它们具有岩浆成因。上述结果证明了松辽地块变质基底的高级变质作用发生在(494±2)Ma,与佳木斯—兴凯地块孔兹岩系所记录的时间相同。而碎屑锆石的年龄为(620±11)~(2 791±18)Ma,表明兴安地块的原岩应为新元古代。
额尔古纳地块西邻蒙古—鄂霍茨克洋构造带(图1,2),以新林—喜贵图断裂与兴安地块分割。一些学者认为额尔古纳地块与中蒙古地块和图瓦地块相连[60],但并没有相关的地质证据支持。
由于中生代花岗岩和火山岩广泛分布,前寒武纪变质基底岩石在额尔古纳地块主要出露于最北部的北极村和漠河之间,南部的红旗林场—满归一带[39](图2)。这2个地区在传统上被列为“兴华渡口群”的一部分[39,54]。由于额尔古纳地块与兴安地块分属于不同的构造单元,因此笔者将额尔古纳地块的变质基底重新命名为漠河杂岩[61],进而区别于兴安地块的兴华渡口杂岩。
图5 兴安地块兴华渡口杂岩的LA-ICPMS锆石U-Pb年龄(据文献[59]修改)Fig.5 LA-ICPMS zircon U-Pb data from the Xinghuadukou complex in the Xing’an block
额尔古纳地块的变质基底岩石主要由矽线石榴片麻岩、角闪斜长片麻岩、黑云斜长片麻岩以及碳酸盐岩组成[39,54-55],并伴有同期变形花岗质岩石的侵入。这些岩石组合应为孔兹岩系,并与佳木斯—兴凯地块出露的麻山群和兴安地块的兴华渡口杂岩一致[15-16]。最近对额尔古纳地块基底岩石的100粒锆石进行了119次分析[61](图6)。70个数据点锆石边部的数据基本是谐和的 (图6a),得到的加权平均206Pb/238U年龄为(495±1)Ma (MSWD=0.045)。这些数据的 Th/U较低,约0.01,表明这些年龄记录了高级变质作用的年龄。其他47次分析的206Pb/238U年龄为660~830Ma[61],另外2个更老的年龄分别为1 020和1 373Ma。这些较老的年龄数据来自锆石核部,具有轻微的震荡环带,相对低的 U、Th含量和较高的 Th/U值(0.29~0.46[61]),是典型的岩浆锆石。这表明660~1 373Ma的年龄限定了这些孔兹岩的原岩,这些结果揭示了其原岩形成于新元古代,最年轻的核心锆石年龄为(608±8)Ma确定了沉积年龄的下限,表明漠河杂岩的形成时代不是前人认为的太古宙—早元古代。高级变质年龄(495±1)Ma与兴安地块和佳木斯地块东部得到的年龄相似。
佳木斯地块的麻山群和兴凯地块的虎头杂岩的锆石 U-Pb年龄基本上可以分为3组[15,28-29,31,62](图7a):480~500Ma,峰期年龄约为502Ma,记录了麻粒岩相变质事件;510~550Ma,峰期年龄为530 Ma,为变形花岗岩的原岩年龄;610~1 800Ma,指示了碎屑物源区主要来自于新元古代碎屑锆石的年龄,并有少量的晚太古代源区。
图6 额尔古纳地块漠河杂岩的LA-ICPMS锆石U-Pb年龄(据文献[61]修改)Fig.6 LA-ICPMS zircon U-Pb data from the Mohe complex in the Erguna block
兴安地块的兴华渡口杂岩的锆石年龄基本上也可分为3组(图7b):480~500Ma,峰期年龄约为494Ma,该年龄记录了高级变质事件;530~570 Ma,峰期年龄为550Ma和660~970Ma,峰期年龄770Ma,被解释为兴华渡口杂岩的原岩年龄主要为新元古代。
额尔古纳地块的漠河杂岩的锆石U-Pb年龄基本上可归为2组[61](图7c):480~499Ma,峰期年龄约为495Ma,记录了高级变质作用;615~850Ma和2个峰期年龄654和787Ma,分别为漠河杂岩的原岩年龄和碎屑岩浆岩年龄,并且证明源区也以新元古代源区为主。
图7 东北地区变质基底及其西伯利亚南缘贝加尔造山带的锆石年龄频谱图(据文献[34]修改)Fig.7 Relative probability plot of basement rocks in NE China compared with zircon ages from the Sayang-Baikal region of Russia(modified from reference[34])
此外,松辽地块北部的变质基底岩石的锆石UPb年龄和松辽盆地基底岩石非常相似。铁力地区4个古生代变质沉积岩样品的碎屑锆石U-Pb年龄为501~2 690Ma,主要集中在501~592Ma,峰期变质年龄为515Ma[44]。松辽地块大量的晚泛非期锆石年龄,连同约为500Ma的张广才岭岩浆活动年龄[45],暗示了中国东北中亚造山带的所有地块都曾经历过早古生代构造事件[44]。这些结果证实,额尔古纳、大兴安岭、兴凯和佳木斯地块,和可能的松辽地块,经历了相同的构造演化,因此应被视为同一个变质带,横跨中国东北1 300km,名为“中国东北地区孔兹岩带”[34,59]。
资料显示,泛非期岩浆作用在东北地区广泛分布,并可大致分为2期:510~550Ma的石榴花岗片麻岩和500~460Ma的块状花岗岩侵入体。其中510~550Ma的石榴花岗片麻岩主要分布在佳木斯、兴安和兴凯地块,在虎头地区的2件石榴花岗片麻岩样品的岩浆锆石加权平均206Pb/238U年龄为522Ma和(515±8)Ma,然而锆石中变质边缘记录的206Pb/238U年龄为510~500Ma。因此,这些片麻岩类遭受了约500Ma变质事件的改造[16,31,62]。500~460Ma的块状花岗岩侵入体主要分布在松辽、兴安和额尔古纳地块中,其岩石类型以花岗岩为主,并以漠河花岗岩体[53]、塔河辉长岩体和多宝山岩体[49-50]以及松辽地块东缘小兴安岭—张广才岭地区的集岭、东风山和汤旺河岩体[45]为代表。值得提出的是与泛非期构造事件年龄相关的岩浆事件年龄在松辽地块逐渐被揭示[43]。如 Liu[45]报道了一些关于张广才岭地区约500Ma的岩浆岩年龄:伊春二长花岗岩的LA-ICP MS锆石年龄为(508±15)Ma;在铁力花岗闪长岩的年龄为(499±1)Ma以及伊春东部碱长花岗岩的年龄为(471±3)Ma。由老到新,这3类花岗岩组合的依次出现反映了同碰撞-碰撞后伸展的构造演化特点[45]。大兴安岭地区的泛非期花岗岩多属于Ⅰ型花岗岩,锆石的LA-ICPMS U-Pb年代学研究表明,其时代为500~460Ma[49-50,53]。 结合本区其他早古生代花岗岩体的锆石U-Pb年龄,限定了东北地区早古生代花岗岩浆活动的时限分为510~550Ma和460~500Ma两期。其中:前者多遭受了造山期高级变质作用的改造,而后者多为同碰撞-碰撞后伸展构造的产物。因此,以早古生代岩浆岩和顺时针p/T轨迹的同期孔兹岩带共同构成了一巨型的约500Ma前后的造山带,这里命名为“中国东北早古生代造山带”。
晚泛非期的高级变质作用发生在沿西伯利亚克拉通南缘>1 000km 的带上[63-64]。事实上,贝加尔带的年龄与额尔古纳相比具有明显的相似性(图2),包括:Derba地体(498±5)Ma[65]和 Kioykin地体(473±3)Ma[66]。近期研究表明,Gladkochub等[67]认为Olkhon地块中的2个麻粒岩锆石记录了变质年龄为(498±7)和(507±8)Ma,主要发生时间约为500Ma。Gladkochub等[67]也从Olhkon地体的碎屑锆石核部得到了535~2 750Ma的早古生代变质年龄。一些贝加尔带高质量的数据(图7d)表明,其具有和东北地区 (图7)相同的变质基底年龄信息。
中国北部和西伯利亚克拉通之间的缝合带闭合的位置和时间至今仍是有争议的:邵济安[35],Tang[10]和 Nozaka[68]认为,贺根山蛇绿岩带是内蒙古东北部索伦山缝合带的向东延伸;曹从周等[69]进一步扩展变成通过黑河呈北东向延伸;Şengör和Natal’in[4]认为缝合带向北延伸穿过布列亚—佳木斯和额尔古纳地块之间的区域,并且同样命名为“索伦缝合带”,是满洲型造山带和阿尔泰型造山带的构造边界;Xiao[70-71]提出了“增生楔碰撞模型”来解释古亚洲洋东部的构造演化,认为西伯利亚和华北克拉通的增生楔是沿着索伦—贺根山缝合带碰撞的,并得到进一步的 Sr-Nd-Pb同位素填图证实[21];Li[8]认为缝合带自西拉沐伦河断裂向东延伸通过吉林省中部至延吉地区,并且缝合带的两侧都是含有火山岛弧岩和深成岩体的活动大陆边缘。位于华北板块和西伯利亚克拉通之间的缝合线位置历来受到地质学家们的广泛关注[4,8,10,35,70-72],但是由于基底岩石缺乏较好的年代学数据,东北地区各地块的性质仍然不能被确定。笔者最近得到了整个东北地区变质基底的年龄数据及频谱图(图7),研究结果不仅可以有效判别中国东北地块的构造亲缘性,并且对确定华北板块和西伯利亚克拉通之间的缝合线位置具有重要的指示意义。
华北板块、华南板块和中亚造山带在早中生代最终拼合之前有着很长不同的岩浆热事件[73-76],并且容易区分。华北板块前寒武纪的基底岩石主要由新元古代晚期花岗岩、正片麻岩(主要由英云闪长岩、奥长花岗岩和花岗闪长岩组成的TTG岩系)和古元古代的变质系列[77-82]。正片麻岩和花岗岩的原岩年龄主要为2.5~2.9Ga[77-80],在1.8~1.9Ga时遭受了角闪岩相到麻粒岩相的区域变质[77-78,80,83]。与之相反,华南板块的特点是具有中、新元古代的较年轻的变质基底,在新元古代遭受了主要的构造热事件改造(1.0~1.1Ga和700~850 Ma)[73-74,84]。华南板块的前寒武纪基底具有在740~820Ma广泛发育的双峰式火山岩组成的裂谷特点[73-74,84-86]。但是华北板块和华南板块并没有约500Ma麻粒岩相事件的证据,因此以500Ma左右泛非期高级变质作用广泛发育的东北地区并不能与华南板块和华北板块联系在一起。
笔者得到的东北地区变质基底的锆石年代学数据为东北地区大地构造属性的判别提供了重要信息[15,16,59,61]。整个中国东北基底岩石显示高级变质发生在约500Ma,此外,这些样品的核部年龄为600~900Ma。这些数据表明,中国东北地块具有明显不同于华北板块或华南板块的特点。以此限定了分布在兴安和额尔古纳地块之间新林—喜贵图缝合带、分布在松辽和兴安地块的贺根山—黑河缝合带都应为中亚造山带的内部断裂,而不能作为华北与西伯利亚板块的最终缝合线;而只有分布在东北地块群南部的索伦—西拉沐伦—长春缝合带才能作为华北和西伯利亚克拉通的缝合线。
关于索伦—西拉沐伦—长春拼合带的缝合时间也受到了广泛的探讨。最近的研究表明,位于华北板块和西伯利亚板块之间古亚洲洋的活动历史可以追溯到中元古代[87]。在新元古代和古生代,一些大型洋盆存在于该地区[64,87-89],尽管关于这些洋盆精确的位置和闭合时间有争议。Zhang和Tang[90]提出贺根山—黑河地区代表了最终缝合位置,时间为晚泥盆—早石炭世[10,90]。古地磁数据支持了这一观点,提出了华北板块最初沿贺根山—黑河断裂与蒙古大陆拼合,然后这个复合的大陆块体沿着蒙古—鄂霍茨克海带与西伯利亚克拉通碰撞[91-93]。然而,其他学者认为,索伦—西拉沐伦—长春缝合线代表了最终碰撞带和最终关闭于二叠纪末期[94-96]。
目前资料显示,古亚洲洋最终的关闭时间不早于早三叠世(表1)。新的证据来自于呼兰群,色洛河群和青龙村群等构造杂岩。根据一些化石和区域对比的结果,这些岩石单元曾被认为形成于早古生代[102]。然而,碎屑沉积物沉积于二叠纪至早三叠世((239±11)~(274±11)Ma;表1),根据最新的年代学数据,呼兰群并不是真正的地层序列,而是由不同时代、不同类型的岩石混杂而成,因此认为这些杂岩为索伦—西拉沐伦—长春缝合带的特征性增生杂岩[103]。最近,李承东等[97]指出色洛河群的高镁安山岩,其SHRIMP U-Pb锆石年龄为(252±5)Ma,表明它们形成于晚二叠世末期,因此,古亚洲洋板块的拼合时代应晚于晚二叠世。增生杂岩的Ar-Ar年龄也给出了较好的年代学信息:红旗岭地区呼兰群石榴黑云片麻岩中黑云母的40Ar/39Ar年龄为(224±0.8)Ma,红旗岭呼兰群二云母片岩中多硅白云母的年龄为(229±5)Ma,红旗岭角闪岩中角闪石的年龄为(228±3)Ma[98]。最近,Lin等[99]同样给出了来自于红旗岭的角闪岩样品的2个角闪石40Ar/39Ar年龄为(208±2)Ma和(214±3)Ma和1个来自于红旗岭的大理岩样品的多硅白云母40Ar/39Ar年龄为(188±1)Ma。来自呼兰群的最年轻的锆石年龄是(239±11)Ma[20],为其后的变质事件年龄限定了上限。因此,由郗爱华[100]获得的多硅白云母40Ar/39Ar年龄为(229±3)Ma,最有可能记录了闭合温度的冷却时代,从而也得到了该地区的高压变质带闭合的时代。
表1 索伦—西拉沐伦—长春缝合带相关构造杂岩的同位素年代学数据Table 1 Geochronological data along the Solonker-Xar Moron-Changchun zone suture zone in NE China
笔者认为这些数据制约了华北板块和已经拼合的中国东北地块群碰撞的时间约为230Ma,即早三叠世,这也是华北与西伯利亚板块最终拼合的时代。
笔者定义的吉林—黑龙江高压变质带(简称吉黑高压带)包括分布在佳木斯—兴凯地块西缘的黑龙江蓝片岩带与分布在佳木斯—兴凯地块南缘的长春—延吉缝合带(图1和图8)。将上述两大构造带作为同一构造单元考虑的因素包括:1)分布在吉林东部华北板块北缘的长春—延吉缝合带为佳木斯—兴凯地块与华北板块拼接形成,因此不能作为华北与西伯利亚板块的碰撞缝合线;2)佳木斯—兴凯地块西缘的黑龙江蓝片岩带和南缘的长春—延吉缝合带应形成于统一的大地构造背景,因此不能将这两大构造带分割开来;3)已有地球物理证据显示,索伦—西拉沐伦—长春缝合带并没有一直延伸到吉林东部的延吉地区,而是终止在敦—密断裂和佳—依断裂之间的地区;4)吉林—黑龙江高压变质带形成于晚三叠—早侏罗世,较索伦—西拉沐伦—长春缝合带形成时代晚30~40Ma。因此,将分布在佳木斯—兴凯地块西缘的黑龙江蓝片岩带和分布在佳木斯—兴凯地块南缘的长春—延吉缝合带作为同一构造单元考虑,这里命名为“吉林—黑龙江高压变质带,简称吉黑高压带”。
图8 吉林—黑龙江高压变质带的分布范围及其与周边地块的关系示意图(据文献[14]修改)Fig.8 Schematic diagram showing Jilin-Heilongjiang high pressure belt and the relationship with the neighboring blocks(modified from reference[14])
黑龙江杂岩沿佳木斯地块和松辽地块的边界分布(图1,2),从北到南包括萝北,依兰,牡丹江3个带[8-9,12-13,28-31,51-52,62]。高压变质带主要由绿帘-蓝片岩相的岩石组合形成,并含有特征性的变质矿物组合(如蓝闪石,多硅白云母)等,代表了高压-低温变质(320~450℃,0.9~1.1GPa)[14]。然而,有关黑龙江杂岩的性质、起源和年龄长期存在争议,曾认为是太古宙—元古宙绿岩带[104],晚元古代变质带[105],早古生代混杂岩[8-9,22,106-109],三叠纪大别—苏鲁—延吉高压—超高压带的东延部分[24-25,27],或太平洋侏罗纪增生带[12]等完全不同的认识。变质的时代早期被认为是早古生代[8-9,106-108,110-111],但是近期[12,14]的工作证明了它们形成于中生代。
牡丹江磨刀石地区蓝片岩的SHRIMP锆石UPb年龄为(213±2)Ma和 (224±7)Ma[14],表明其原岩形成于晚三叠世。锆石具有岩浆振荡环带和中等的Th/U值,表明这些年龄记录的是基性岩的形成年龄。不同的是,来自依兰地区的蓝片岩样品锆石加权平均206Pb/238U年龄为(258±2)Ma和(259±4)Ma,为晚二叠世。锆石的韵律环带表明了此记录的变质基性岩的原岩年龄,不同于牡丹江的蓝片岩,依兰地区的蓝片岩具有OIB的亲缘性,形成时代更早[14]。这些数据,连同其他最近的研究[12],表明黑龙江杂岩的原岩形成于较长的时代跨度,从273~210Ma,峰期年龄在227~256Ma(图9)。因此,黑龙江杂岩形成于晚二叠世至三叠纪,而不是先前认为的太古宙,中元古代或古生代。
变质时代的上限可以由牡丹江二云母片岩样品中最年轻的谐和锆石分析得到。最年轻的岩浆锆石谐和年龄为(207±3)Ma[17]。因此,牡丹江云母片岩原岩沉积的最大年龄估计约为210Ma,同样制约了该区变质的最大可能时代。黑龙江杂岩被认为是在p/T条件为320~450℃、0.9~1.1GPa下,变质为蓝片岩相[14]。这就意味着云母Rb-Sr和40Ar/39Ar法可以制约其变质时代,因为一般来说多硅白云母的Ar封闭温度为350~400℃[112]。李锦轶等[9]发表了来自云母片岩的2个白云母40Ar/39Ar年龄分别是(175.3±0.9)Ma和(166±1.2)Ma,1个来自角闪岩中的角闪石年龄为(167.1±1.5)Ma。Wu等[12]也发表了1个来自萝北片麻岩中的黑云母Rb-Sr矿物等时线年龄为(184±4)Ma和3个来自依兰云母片岩样品中的多硅白云母的40Ar/39Ar年龄分别为(173.6±0.5)Ma,(175.3±0.4)Ma和(174.8±0.5)Ma。结合牡丹江蓝片岩最年轻的锆石年龄为(207±3)Ma[14],给出了变质时代的上限。因此,Wu等[12]获得的Rb-Sr矿物等时线法得到的角闪片麻岩年龄(184±4)Ma和多硅白云母的40Ar/39Ar年龄176Ma左右很有可能记录了该区高压变质的末期(图9)。因此,认为黑龙江蓝片岩的形成时代为晚三叠—早侏罗世[14,17]。新近的研究进一步证明了研究结果的可靠性[113-118]。
图9 黑龙江杂岩的Ar-Ar,Rb-Sr和锆石U-Pb年龄(据文献[103]修改)Fig.9 Ar-Ar,Rb-Sr and zircon U-Pb data from the epidote-blueschist facies mafic rocks of the Heilongjiang complex(modified from reference[103])
亚洲大陆东缘的构造背景是非常有争议的。这个区域被认为是整个显生宙几个微陆块增生演化而来的,造成了复杂的地块拼贴[8-9,11-12]。在中国东北和俄罗斯远东地区,西伯利亚和华北克拉通之间的不断碰撞主导了前中生代东西向构造的中亚造山带的形成[1-8]。中生代以来研究区多显示太平洋板块俯冲的结果,俯冲增生杂岩沿现今大陆边缘南北向展布(图1,2)。
最新数据表明,黑龙江杂岩原岩年龄为晚二叠—早三叠世(260~210Ma),因此,佳木斯—兴凯地块与其西部松辽地块和南部华北板块的最终闭合时代为210~180Ma,其较西伯利亚与中国东北地块最终对接的开始时代晚大约30~40Ma。因此,认为黑龙江蓝片岩带的形成与西伯利亚和华北板块的碰撞无关,而与太平洋板块俯冲关系密切[12,14]。这就意味着为吉黑高压变质带形成于古亚洲构造域的结束和太平洋俯冲的开始,因此,吉黑高压变质带记录了两大构造域转换的重大地质时期。
前人曾针对东北地区的构造演化提出了相关的构造模型[1-2,4,8-9,36-37,70,108,119-122],还有一些模型进一步探讨了西伯利亚和华北克拉通之间的构造演化[1-2,4,8,37,70]。在此基础上,笔者针对东北地区取得的最新成果,提出了新的构造模型:
1)500Ma左右,中国东北地块群(包括额尔古纳/兴安/松辽/佳木斯/兴凯/布列亚地块)作为西伯利亚克拉通晚泛非期(约500Ma)南缘造山带的组成部分[15](图10a)。碰撞伴随着幔源岩浆在450~475Ma的侵位,引起增厚的岩石圈的熔化和同构造花岗岩的侵入。
2)450~300Ma,已经拼合的泛非期地块裂解并向南向现在的中国东北移动,其可能诱因于蒙古—鄂霍茨克海在该期的打开[122](图10b)。
3)约230Ma,华北板块和西伯利亚克拉通沿索伦—西拉沐伦—长春一线拼贴 (图10c)。
4)210~180Ma,由于太平洋板块的俯冲导致佳木斯—兴凯地块最终与松辽地块和华北板块对接[14],形成吉黑高压变质带(图10d)。
1)东北地区变质基底岩石为由矽线石榴片麻岩、角闪斜长片麻岩和长英质片麻岩组成的孔兹岩系。矽线石榴片麻岩的锆石U-Pb同位素测年指示了发生在500Ma的高级变质作用,而锆石核部年龄为600~900Ma。这些数据表明,中亚造山带东段的变质基底原岩形成于新元古代,而变质年龄为500Ma左右。孔兹岩系及其对应的泛非期变质事件广泛分布于额尔古纳、兴安、松辽和佳木斯—兴凯等东北地区,出露范围超过1 300km,形成巨型的“中国东北孔兹岩带”。以顺时针p/T轨迹的孔兹岩带与同期岩浆杂岩共同构成了一巨型的500Ma左右的早古生代造山带,这里命名为“中国东北早古生代造山带”。
2)中国东北地块基底岩石可能曾经在晚泛非期(500Ma左右)是西伯利亚克拉通南缘发育的Sayang-Baikal造山带的组成部分。450~300Ma,已经拼合的中国东北地块与西伯利亚南缘裂离并向南向现在的中国东北方向移动,并导致蒙古—鄂霍茨克洋同时打开。
图10 东北地区从泛非期到侏罗纪构造演化模型(据文献[103]修改)Fig.10 A cartoon model showing possible source region and subsequent drift history of the combined NE China blocks from the Late Pan-African to the Jurassic(modified from reference[103])
3)华北板块与西伯利亚克拉通之间的缝合带为索伦—西拉沐伦—长春断裂,其闭合时代为230Ma左右。
4)笔者命名的“吉林—黑龙江高压变质带”,简称吉黑高压带,包括佳木斯—兴凯地块西缘的黑龙江蓝片岩带和佳木斯—兴凯地块南缘的长春—延吉缝合带。吉黑高压带形成于太平洋板块自东向西的俯冲,这表明吉黑高压变质带形成于东西向中亚造山带闭合和南北向太平洋板块俯冲增生的转化时期。
(References):
[1]Natal’in B A.Mesozoic Accretion and Collision Tectonics of Southern USSR Far East[J].Pacific Geology,1991,10:3-23.
[2]Natal’in B A.History and Modes of Mesozoic Accretion in Southeastern Russia[J].The Island Arc,1993,2:15-34.
[3]Şengör A MC,Natal’in B A ,Burtman V S.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J].Nature,1993,364:299-307.
[4]Şengör A MC,Natal’in B A.Paleotectonics of Asia:Fragments of a Synthesis[C]//Yin A,Harrison T M.The Tectonic Evolution of Asia.Cambridge:Cambridge University Press,1996:486-640.
[5]任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造:中国及临区大地构造图简要说明[M].北京:地质出版社,1999:4-32.Ren Ji-shun,Wang Zuo-xun,Chen Bing-wei,et al.The Tectonics of China from a Global View:A Guide to the Tectonic Map of China and Adjacent Regions[M].Beijing:Geological Publishing House,1999:4-32.
[6]Jahn B M,Wu F Y,Chen B.Massive Granitoid Generation in Central Asia:Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes,2000,23:82-92.
[7]Jahn B M.The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic[C]//Malpas J,Fletcher C J,Ali N,et al.Aspects of the Tectonic Evolution of China.London:Geological Society of London,2004:73-100.
[8]Li J Y.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,2006,26:207-224.
[9]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999:32-50.Li Jin-yi,Niu Bao-gui,Song Biao,et al.Crustal Formation and Evolution of Northern Changbai Mountains,Northeast China[M].Beijing:Geological Publishing House,1999:32-50.
[10]Tang K D.Tectonic Dvelopment of Palaeozoic Fold Belts at the North Margin of the Sino-Korean Craton[J].Tectonics,1990,9:249-260.
[11]唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.Tang Ke-dong,Wang Ying,He Guo-qi,et al.Continental-Margin Structure of Northeast China and Its Adjacent Areas[J].Acta Geologica Sinica,1995,69(1):16-30.
[12]Wu F Y,Yang J H,Lo C H,et al.Jiamusi Massif in China:A Jurassic Accretionary Terrane in the Western Pacific[J].The Island Arc,1990,16:156-172.
[13]Wu F Y,Zhao G C,Sun D Y,et al.The Hulan Group:Its Role in the Evolution of the Central Asian Orogenic Belt of NE China[J].Journal Asian Earth Science,2007,30:542-556.
[14]Zhou J B,Wilde S A ,Zhang X Z,et al.The Onset of Pacific Margin Accretion in NE China:Evidence From the Heilongjiang High-Pressure Metamorphic Belt[J].Tectonophysics,1999,478:230-246.
[15]Zhou J B,Wilde S A,Zhao G C,et al.Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia:An Intriguing Dilemma?[J].Journal of Geodynamics,2010,50:300-317.
[16]Zhou J B,Wilde S A,Zhao G C,et al.Pan-African Metamorphic and Magmatic Rocks of the Khanka Massif,NE China:Further Evidence Regarding Their Affinity[J].Geological Magazine,2010,147(5):737-749.
[17]Zhou J B,Wilde S A,Zhao G C,et al.New SHRIMP U-Pb Zircon Ages from the Heilongjiang Complex in NE China:Constraints on the Mesozoic Evolution of NE China[J].American Journal of Science,2010,310:1024-1053.
[18]Wu F Y,Sun D Y,Li H M,et al.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J].Chemical Geology,2002,187:143-73.
[19]Zhang X H,Zhang H F,Tang Y J,et al.Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia,North China:Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt[J].Chemical Geology,2008,249:262-281.
[20]Zhang X H,Wilde S A,Zhang H F,et al.Geochemistry of Hornblende Gabbros from Sonidzuoqi,Inner Mongolia,North China:Implication for Magmatism During the Final Stage of Suprasubduction Zone Ophiolite Formation[J].International Geology Review,2009,51:345-373.
[21]Guo F,Fan W M,Gao X F,et al.Sr-Nd-Pb Isotope Mapping of Mesozoic Igneous Rocks in NE China Constraints on Tectonic Framework and Phanerozoic Crustal Growth[J].Lithos,2010,120:563-578.
[22]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科技出版社,1992:1-126.Cao Xi,Dang Zeng-xin,Zhang Xing-zhou,et al.The Composite Jiamusi Terrane[M].Changchun:Jilin Publishing House of Science and Technology,1992:1-126.
[23]邵济安,唐克东,詹立培.一个古大陆边缘的再造及其大地构造意义:延边地质研究新进展[J].中国科学:B辑,1995,25(5):548-555.Shao Ji-an,Tang Ke-dong,Zhan Li-pei.Reconstruction of an Ancient Continental Margin and Its Implication:New Progress on the Study of Geology of Yanbian Region,Northeast China[J].Science in China:Series B,1995,25(5):548-555.
[24]Zhang K J.North and South China Collision Along the Eastern and Southern North China Margins[J].Tectonophysics,1995,270:145-156.
[25]Zhang K J.Granulite Xenoliths from Cenozoic Basalts in SE China Provide Geochemical Fingerprints to Distinguish Lower Crust Terranes from the North and South China Tectonic Blocks:Comment[J].Lithos,2004,73:127-134.
[26]Oh C W.A New Concept on Tectonic Correlation Between Korea,China and Japan:Histories from the Late Proterozoic to Cretaceous[J].Gondwana Research,2006,9:47-61.
[27]Ishiwatari A,Tsujimori T.Paleozoic Ophiolites and Blueschists in Japan and Russian Primorye in the Tectonic Framework of East Asia:A Synthesis[J].The Island Arc,2003,12:190-206.
[28]Wilde S A,Dorsett-Bain H L,Liu J L.The Identification of a Late Pan-African Granulite Facies Event in Northeastern China:SHRIMP U-Pb Zircon Dating of the Mashan Group at Liu Mao,Heilongjiang Province,China[C]//Proceedings of the 30th IGC:Precambrian Geology and Metamorphic Petrology.Amsterdam:VSP International Science Publishers,1997:59-74.
[29]Wilde S A,Zhang X Z,Wu F Y.Extension of a Newly-Identified 500Ma Metamorphic Terrain in Northeast China:Further U-Pb SHRIMP Dating of the Mashan Complex,Heilongjiang Province,China[J].Tectonophysics,2000,328:115-30.
[30]Wu F Y,Sun D Y,Li H M,et al.The Nature of Basement Beneath the Songliao Basin in NE China:Geochemical and Isotopic Constraints[J].Physics and Chemistry of the Earth:Part A,2000,26:793-803.
[31]Wilde S A,Wu F Y,Zhang X Z.Late Pan-African Magmatism in Northeastern China:SHRIMP U-Pb Zircon Evidence for Igneous Ages from the Mashan Complex[J].Precambrian Research,2003,122:311-27.
[32]姜继圣.麻山群孔兹岩系主期区域变质作用及演化[J].岩石矿物学杂志,1992,11(2):97-108.Jiang Ji-sheng.Peak Regional Metamorphism of the Khondalite Series of Mashan Group and Its Evolution[J].Acta Petrologica et Mineralogica,1992,11(2):97-108.
[33]Lennon R G,Wilde S A,Yang T.The Mashan Group:A 500Ma Granulite Facies Terrain Within the Jiamusi Massif,Heilongjiang Province,North-Eastern China[C]//Cox R,Ashwal L D.Proterozoic Geology of Madagascar Proceedings of UNESCOIUGS-IGCP 348/368International Field Workshop,Antananarivo,Madagascar.Antananarivo:Gondwana Research Group,1997:45-46.
[34]Zhou J B,Wilde S A,Zhang X Z,et al.A>1 300 km Late Pan-African Metamorphic Belt in NE China:New Evidence from the Xing’an Block and Its Tectonic Implications[J].Tectonophysics,2011,509:280-292.
[35]邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991:1-136.Shao Ji-an.Crustal Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate[M].Beijing:Peking University Press,1991:1-136.
[36]Jia D C,Hu R Z,Lu Y,et al.Collision Belt Between the Khanka Block and the North China Block in the Yanbian Region,Northeast China[J].Journal of Asian Earth Sciences,2004,23:211-219.
[37]Shi G R,Zhan L P.A Mixed Mid-Permian Marine Fauna from the Yanji Area,Northeastern China:A Paleobiogeographical Reinterpretation[J].The Island Arc,1996,5:385-395.
[38]Shi G R,Marine Permian in East and NE Asia:An Overview of Biostratigraphy,Palaeobiogeography and Palaeogeographical Implications[J].Journal of Asian Earth Sciences,2006,26(3/4):175-206.
[39]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993:1-734.Heilongjiang Bureau of Geology and Mineral Resources.Regional Geology of Heilongjiang Province[M].Beijing:Geological Publishing House,1993:1-734.
[40]赵春荆,彭玉鲸,党增欣.吉林东部和黑龙江省地壳组成和演化:吉林东部和黑龙江省地质图1∶150万地图和解释说明[R].沈阳:沈阳地质矿产研究所,1995.Zhao Chun-jing,Peng Yu-jing,Dang Zeng-xin.The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces:Geotectonic Map of Eastern Jilin and Heilongjiang Provinces 1∶1 500 000Scale Map and Explanatory Notes[R].Shenyang:Shenyang Institute of Geology and Mineral Resources,1995.
[41]王颖,张福勤,张大伟,等.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2006,51(15):1877-1883.Wang Ying,Zhang Fu-qin,Zhang Da-wei,et al.Zircon SHRIMP U-Pb Dating of Meta-Diorite from the Basement of the Songliao Basin and Its Geological Significance[J].Chinese Science Bulletin,2006,51(15):1877-1883.
[42]裴福萍,许文良,杨德彬,等.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义[J].科学通报,2006,51(24):942-948.Pei Fu-ping,Xu Wen-liang,Yang De-bin,et al.Zircon U-Pb Geochronology of Basement Metamorphic Rocks in the Songliao Basin[J].Chinese Science Bulletin,2006,51(24):942-948.
[43]Wu F Y,Sun D Y,Ge W C,et al.Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41:1-30.
[44]Zhou J B,Wilde S A,Zhang X Z,et al.Detrital Zircons from Phanerozoic Rocks of the Songliao Block,NE China:Evidence and Tectonic Implications[J].Journal of Asian Earth Sciences,2012,47:21-34.
[45]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534-544.Liu Jian-feng,Chi Xiao-guo,Dong Chun-yan,et al.Discovery of Early Paleozoic Granites in the Eastern Xiao Hinggan Mountains,Northeastern China and Their Tectonic Significance[J].Geological Bulletin of China,2008,27(4):534-544.
[46]Meng E,Xu W L,Pei F P,et al.Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province,NE China:Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J].Tectonophysics,2010,53:1231-1245.
[47]Meng E,Xu W L,Pei F P,et al.Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province,NE China:Zircon U-Pb-Hf I-sotopes and Geochemical Evidence[J].Journal of A-sian Earth Sciences,2011,41:119-132.
[48]Wang F,Xu W L,Meng E,et al.Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt:Geochronological and Geochemical Evidence From Granitoids and Rhyolites[J].Journal of Asian Earth Sciences,2012,49:234-248.
[49]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007,23(2):423-440.Ge Wen-chun,Sui Zen-min,Wu Fu-yuan,et al.Zircon U-Pb Ages,Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northwestern Da Hinggan Mts,Northeastern China[J].Acta Petrologica Sinica,2007,23(2):423-440.
[50]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(24):3416-3427.Ge Wen-chun,Wu Fu-yuan,Zhou Chang-yong,et al.Porphyry Cu-Mo Deposits in the Eastern Xing’an-Mongolian Orogenic Belt:Mineralization Ages and Their Geodynamic Implications[J].Chinese Science Bulletin,2007,52(24):3416-3427.
[51]Wu F Y,Jahn B M,Wilde S A.Phanerozoic Continental Crustal Growth:Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics,2000,328:87-113.
[52]Wu F Y,Jahn B M,Wilde S A,et al.Highly Fractionated I-Type Granites in NE China:I:Geochronology and Petrogenesis[J].Lithos,2003,66:241-73.
[53]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(23):2733-2743.Wu Guang,Sun Feng-yue,Zhao Cai-sheng,et al.Discovery of the Early Paleozoic Post Orogenic Granite in Northern Margin of the Erguna Massif and Its Significance[J].Chinese Science Bulletin,2005,50(23):2733-2743.
[54]王友勤.中国东北区前寒武纪地层[J].吉林地质,1996,15(1):1-14.Wang You-qin.Pre-Cambrian Stratigraphy of Northeastern China[J].Jilin Geology,1996,15(1):1-14.
[55]表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1):28-32.Biao Shang-hu,Li Yang-chun,He Xiao-hua,et al.The Geochemical Characteristics of the Xinghuadukou Group in the Lulin Forestry Center,Tahe,Heilongjiang Province[J].Regional Geology of China,1999,18(1):28-32.
[56]苗来成,刘敦一,张福勤,等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52(5):1112-1134.Miao Lai-cheng,Liu Dun-yi,Zhang Fu-qin,et al.Zircon SHRIMP U-Pb Ages of the “Xinghuadukou Group”in Hanjiayuanzi and Xinlin Areas and the“Zhalantun Group”in Inner Mongolia,Da Hinggan Mountains[J].Chinese Science Bulletin,2007,52(5):1112-1134.
[57]Miao L C,Fan W M,Zhang F Q,et al.Zircon SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing’an Range,and Its Geological Implications[J].Chinese Science Bulletin,2004,49:2201-2209.
[58]Wu G,Chen Y C,Chen Y J,et al.Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range,NE China,and Their Tectonic Implications[J].Journal of Asian Earth Sciences,2012,49:214-233.
[59]周建波,张兴洲,Wilde S A,等.中国东北~500Ma泛非期孔兹岩带的确定及其意义[J].岩石学报,2011,27(4):1235-1245.Zhou Jian-bo,Zhang Xing-zhou,Wilde S A,et al.Confirming of the Heilongjiang~500Ma Pan-African Khondalite Belt and Its Tectonic Implications[J].Acta Petrologica Sinica,2011,27(4):1235-1245.
[60]Badarch G,Cunningham W D,Windley B F.A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia[J].Journal of Asian Earth Sciences,2002,21:87-110.
[61]Zhou J B,Wilde S A,Zhang X Z,et al.Pan-African Metamorphic Rocks of the Erguna Block in the Great Xing’an Range,NE China:Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications[J].Tectonophysics,2011,499(1/2/3/4):105-117.
[62]Wilde S A,Dorsett-Bain H L,Lennon R G.Geological Setting and Controls on the Development of Graphite,Sillimanite and Phosphate Mineralisation Within the Jiamusi Massif:An Exotic Fragment of Gondwanaland Located in North-Eastern China?[J]Gondwana Research,1999,2:21-46.
[63]Salnikova E B,Sergeev S A,Kotov A B.U-Pb Zircon Dating of Granulite Metamorphism in the Slyudyanskiy Complex,Eastern Siberia[J].Gondwana Research,1998,1:195-205.
[64]Khain E V,Bibikova E V,Salnikova E B,et al.The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochronologic Data and Palaeotectonic Reconstructions[J].Precambrian Research,2003,122:329-358.
[65]Nozhkin A D,Turkina O M,Bayanova T B.The Granitoids of the South-Western Frame of the Siberian Craton as Indicators of the Riphean Juvenile Crust Forming and Following Accretion-Collisional Processes[C]//Sklyarov E V.Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt.Irkutsk:IG SB RAS,2004:49-52.
[66]Donskaya T V,Sklyarov E V,Gladkochub D P.The Baikal Collisional Metamorphic Belt[J].Doklady Earth Sciences,2000,374:1075-1079.
[67]Gladkochub D P,Donskaya T V,Wingate MT D,et al.Petrology,Geochronology,and Tectonic Implications of c.500Ma Metamorphic and Igneous Rocks Along the Northern Margin of the Central Asian Orogen(Olkhon Terrane,Lake Baikal,Siberia)[J].Journal of the Geological Society of London,2008,165:235-246.
[68]Nozaka T,Liu L.Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China[J].Earth and Planetary Science Letters,2002,202:89-104.
[69]曹从周,杨芳林,田昌裂.内蒙古贺根山地区蛇绿岩和中朝板块和西伯利亚板块之间的缝合带位置[C]//中国北方板块构造论文集:第1集.北京:地质出版社,1986:64-86.Cao Chong-zhou,Yang Fang-lin,Tian Chang-lie.The Ophiolite in Hegenshan District,Nei Mongol and the Position of Suture Line Between Sino-Korean and Siberian Plates[C]//Contributions to the Project of Plate Tectonics in Northern China:No.1.Beijing:Geological Publishing House,1986:64-86.
[70]Xiao W J,Windley B F,Hao J,et al.Accretion Leading to Collision and the Permian Solonker Suture,Inner Mongolia,China[J].Tectonics,2003,22(6),1069.doi:10.1029/2002TC001484.
[71]Xiao W J,Huang B C,Han C M,et al.A Review of the Western Part of the Altaids:A Key to Understanding the Architecture of Accretionary Orogens[J].Gondwana Research,2010,18:253-273.
[72]Xu W L,Ji W Q,Pei F P,et al.Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces,NE China:Chronology,Geochemistry,and Tectonic Implications[J].Journal of Asian Earth Sciences,2009,34:392-402.
[73]Zheng Y F,Fu B,Gong B,et al.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime[J].Earth Science Reviews,2003,62:105-161.
[74]Zheng Y F,Zhou J B,Wu Y B,et al.Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt:A Passive-Margin Accretionary Wedge Deformed During Continent Subduction[J].International Geology Review,2005,47:851-871.
[75]Zhou J B,Wilde S A,Zhao G C,et al.Detrital Zircon U-Pb Dating of Low-Grade Metamorphic Rocks in the Sulu UHP Belt:Evidence for Overthrusting of the North China Craton onto the South China Craton During Continental Subduction[J].Journal of the Geological Society of London,2008,165:423-433.
[76]Rojas-Agramonte Y,Kröner A,Demoux A,et al.Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia:Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt[J].Gondwana Research,2012,19:751-763.
[77]Zhao G C,Cawood P A,Wilde S A,et al.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution[J].Precambrian Research,2000,103:55-88.
[78]Zhao G C,Cawood P A,Wilde S A,et al.Review of Global 2.1-1.8Ga Orogens:Implications for a Pre-Rodinia Supercontinent[J].Earth Science Reviews,2003,59:125-162.
[79]Wilde S A,Zhao G C.Archean to Paleoproterozoic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2005,24:519-522.
[80]Zhou J B,Wilde S A,Zhao G C,et al.SHRIMP UPb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane,North China Craton,and Their Tectonic Implications[J].Precambrian Research,2008,160:323-340.
[81]Liu S W,Santosh M,Wang W,et al.Zircon U-Pb Chronology of the Jianping Complex:Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton[J].Gondwana Research,2011,20:48-63.
[82]Zhou J B,Wilde S A,Zhao G C,et al.SHRIMP UPb Zircon Dating of the Wulian Complex:Defining the Boundary Between the North and South China Cratons in the Sulu Orogenic Belt,China[J].Precambrian Research,2008,162:559-576.
[83]Santosh M,Sajeev K,Li J H.Extreme Crustal Metamorphism During Columbia Supercontinent Assembly:Evidence from North China Craton[J].Gondwana Research,2008,10:256-266.
[84]Zhang H F,Ying J F,Tang Y J,et al.Phanerozoic Reactivation of the Archean North China Craton Through Episodic Magmatism:Evidence from Zircon U-Pb Geochronology and Hf Isotopes from the Liaodong Peninsula[J].Gondwana Research,2011,19:446-459.
[85]Li Z X,Li X H,Zhou H,et al.Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia[J].Geology,2002,30:163-166.
[86]Li Z X,Li X H,Kinny P D,et al.Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton,South China and Correlations with Other Continents:Evidence for a Mantle Superplume That Broke Up Rodinia[J].Precambrian Research,2003,122:85-109.
[87]Khain E V,Bibikova E V,Kroner A,et al.The Most Ancient Ophiolite of the Central Asian Fold Belt:U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex,Eastern Sayan,Siberia,and Geodynamic Implications[J].Earth and Planetary Science Letters,2002,199:311-325.
[88]Dobretsov N L,Berzin N A,Buslov M.Opening and Tectonic Evolution of the Paleo-Asian Ocean[J].International Geology Review,1995,37:335-360.
[89]Dobretsov N L.Evolution of Structures of the Urals,Kazakhstan,Tien Shan,and Altai-Sayan Region Within the Ural-Mongolian Fold Belt (Paleoasian Ocean)[J].Russian Geology and Geophysics,2003,44:5-27.
[90]Zhang Y P,Tang K D.Pre-Jurassic Tectonic Evolution of Intercontinental Region and the Suture Zone Between the North China and Siberian Platforms[J].Journal of Southeast Asian Earth Sciences,1989,3:47-55.
[91]Muller J F,Rogers J J W,Jin Y G,et al.Late Carboniferous to Permian Sedimentation in Inner Mongolia,China,and Tectonic Relationships Between North China and Siberia[J].Journal of Geology,1991,99:251-263.
[92]Zorin Y A.Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt,Trans-Baikal Region (Russia)and Mongolia[J].Tectonophysics,1991,306:33-56.
[93]Kravchinsky V A,Cogne J P,Harbert W P,et al.Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone,Siberia[J].Geophysical Journal International,2002,148:34-57.
[94]Wang Q,Liu X Y.Paleoplate Tectonics Between Cathaysia and Angaraland in Inner Mongolia of China[J].Tectonics,1986,5:1073-1088.
[95]王玉净,樊志勇.内蒙古西拉沐伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.Wang Yu-jing,Fan Zhi-yong.Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xar Moron River,Nei Mongol and Its Geological Significance[J].Acta Paleontologica Sinica,1997,36(1):58-69.
[96]Miao L C,Fan W M,Liu D Y,et al.Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxing’anling Orogenic Belt,China[J].Journal of Asian Earth Sciences,2008,32:348-370.
[97]李承东,张福勤,苗来成,等.色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报,2007,23(4):767-776.Li Cheng-dong,Zhang Fu-qin,Miao Lai-cheng,et al.Zircon SHRIMP Geochronology and Geochemistry of Late Permian High-Mg Andesites in Seluohe Area,Jilin Province,China[J].Acta Petrologica Sinica,2007,23(4):767-776.
[98]刘金玉,郗爱华,葛玉辉,等.红旗岭3号含矿岩体地质年龄及其岩石学特征[J].吉林大学学报:地球科学版,2010,40(2):321-326.Liu Jin-yu,Xi Ai-hua,Ge Yu-hui,et al.Mineralization Age of the No.3Ore-Bearing Intrusion and Its Petrological Significance in Hongqiling Cu-Ni Sulfide Deposits,Jilin Province[J].Journal of Jilin University:Earth Science Edition,2010,40(2):321-326.
[99]Lin W,Faure M,Nomade S,et al.Permian-Triassic Amalgamation of Asia:Insights from Northeast China Sutures and Their Place in the Final Collision of North China and Siberia[J].Comptex Rendus Geoscience,2008,340:190-201.
[100]郗爱华,任洪茂,张宝福,等.吉林中部呼兰群同位素年代学及其地质意义[J].吉林大学学报:地球科学版,2003,33(1):15-18.Xi Ai-hua,Ren Hong-mao,Zhang Bao-fu,et al.Isotopic Chronology of the Hulan Group and Its Geological Significance in the Central Jilin Province[J].Journal of Jilin University:Earth Science Edition,2003,33(1):15-18.
[101]张春艳,张兴洲,夏庆贺.吉林中部硅质岩中锆石U-Pb年龄及其地质意义[J].现代地质,2009,23(2):256-261.Zhang Chun-yan,Zhang Xing-zhou,Xia Qing-he.Zircon U-Pb Age of Siliceous Rock from the Central Jilin and Its Geological Significance[J].Geoscience,2009,23(2):256-261.
[102]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.Jilin Bureau of Geology and Mineral Resources.Regional Geology of Jilin Province[M].Beijing:Geological Publishing House,1988.
[103]Zhou J B,Wilde S A.The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt[J].Gondwana Research,2012,doi:10.1016/j.gr.2012.05.012.
[104]赵春荆,彭玉鲸,党增欣.吉黑东部构造格架和地壳演化[M].沈阳:辽宁大学出版社,1996:1-226.Zhao Chun-jing,Peng Yu-jing,Dang Zeng-xin.The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces[M].Shenyang:Liaoning University Press,1996:1-226.
[105]党延松,李德荣.关于佳木斯地块前寒武纪同位素地质年代学问题的讨论[J].长春地质学院学报,1993,23(3):332-318.Dang Yan-song,Li De-rong.Discussion on Isotope Geochronology of Precambrian Jiamusi Block[J].Journal of Changchun University of Earth Sciences,1993,23(3):318-332.
[106]Liou J G,Graham S A,Maruyama S,et al.Protetozoic Blueschist Belt in Western China:Best Docu-mented Precambrian Blueschists in the Word[J].Geology,1989,17:1127-1131.
[107]Liou J G,Wang X,Coleman R G,et al.Blueschists in Major Suture Zones of China[J].Tectonics,1989,8:609-619.
[108]张兴洲.蓝片岩与绿片岩共存:龙江岩系构造演化的新证据[J].长春地质学院学报,1991,21(3):277-282.Zhang Xing-zhou.Coexistence of Blueschists and Greenschists:A New Evidence for the Tectonic E-volution of the Heilongjiang Rock Series[J].Journal of Changchun University of Earth Sciences,1991,21(3):277-282.
[109]颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP UPb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250.Xie Heng-qiang,Zhang Fu-qin,Miao Lai-cheng,et al.Zircon SHRIMP U-Pb Dating of the Amphibolite from‘Heilongjiang Group’and the Granite in Mudanjiang Area,NE China,and Its Geological Significance[J].Acta Petrologica Sinica,2008,24(6):1237-1250.
[110]Yan J Y,Tang K D,Bai J W,et al.High Pressure Metamorphic Rocks and Their Tectonic Environment in Northeastern China[J].Journal of Southeastern Asian Earth Sciences,1989,3:303-313.
[111]宋彪,牛宝贵,李锦轶,等.牡丹江—鸡西花岗岩类同位素地质年代学研究[J].岩石矿物学杂志,1994,13(3):204-213.Song Biao,Niu Bao-gui,Li Jin-yi,et al.Isotope Geochronology of Granitoids in Mudanjiang-Jixi Area[J].Acta Petrologica et Mineralogica,1994,13(3):204-213.
[112]Kirschner D L,Cosca MA,Masson H,et al.Staircase40Ar/39Ar Spectra of Fine-Grained White Mica:Timing and Duration of Deformation and Empirical Constraints on Argon Diffusion[J].Geology,1996,24:747-750.
[113]张兴洲,周建波,迟效国,等.东北地区晚古生代构造-沉积特征与油气资源[J].吉林大学学报:地球科学版,2008,38(5):719-725.Zhang Xing-zhou,Zhou Jian-bo,Chi Xiao-guo,et al.Late Paleozoic Tectonic-Sedimentation and Pe-troleum Resources in Northeastern China[J].Journal of Jilin University:Earth Science Edition,2008,38(5):719-725.
[114]周建波,韩杰,张兴洲,等.牡丹江地区蓝片岩的地球化学特征及其大地构造意义[J].吉林大学学报:地球科学版,2010,40(1):93-103.Zhou Jian-bo,Han Jie,Zhang Xing-zhou,et al.Geochemical Characteristics of the Mudanjiang Blueschists in the NE China and Its Tectonic Implications[J].Journal of Jilin University:Earth Science Edition,2010,40(1):93-103.
[115]李旭平,孔凡梅,郑庆道,等.黑龙江萝北地区黑龙江杂岩年代学研究[J].岩石学报,2010,26(7):2015-2024.Li Xu-ping,Kong Fan-mei,Zheng Qing-dao,et al.Geochronological Study on the Heilongjiang Complex at Luobei Area,Heilongjiang Province[J].Acta Petrologica Sinica,2010,26(7):2015-2024.
[116]赵亮亮,张兴洲.黑龙江省东部黑龙江杂岩构造折返的岩石学和年代学证据[J].岩石学报,2011,27(4):1227-1234.Zhao Liang-liang,Zhang Xing-zhou,Petrological and Geochronological Evidences of Tectonic Exhumation of Heilongjiang Complex in the Eastern Part of Heilongjiang Province,China[J].Acta Petrologica Sinica,2011,27(4):1227-1234.
[117]Li W M,Takasu A,Liu Y J,et al.40Ar/39Ar Ages of the High-p/TMetamorphic Rocks of the Heilongjiang Complex in the Jiamusi Massif,Northeastern China[J].Journal of Mineralogical and Petrological Sciences,2009,104:110-116.
[118]李旭平,焦丽香,郑庆道,等.黑龙江桦南地区黑龙江杂岩锆石 U-Pb定年[J].岩石学报,2009,25(8):1909-1916.Li Xu-ping,Jiao Li-xiang,Zheng Qing-dao,et al.U-Pb Zircon Dating of the Heilongjiang Complex at Huanan,Heilongjiang Province[J].Acta Petrologica Sinica,2009,25(8):1909-1916.
[119]Xiao W J,Windley B F,Badarch G,et al.Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids:Implications for the Growth of Central Asia[J].Journal of the Geological Sociery of London,2004,161:339-342.
[120]Xiao W J,Zhang L C,Qin K Z,et al.Paleozoic Accretionary and Collisional Tectonics of the Eastern Tienshan (China):Implications for the Continental Growth of Central Asia[J].American Journal of Sciences,2004,304:370-395.
[121]王成文,孙跃武,李宁,等.东北地区晚古生代地层分布规律[J].地层学杂志,2009,33(1):56-61.Wang Cheng-wen,Sun Yue-wu,Li Ning,et al.On the Distribution of the Late Palaeozoic Strate in Northeast China[J].Journal of Stratigraphy,2009,33(1):56-61.
[122]Kelty T K,Yin A,Dash B,et al.Detrital-Zircon Geochronology of Paleozoic Sedimentary Rocks in the Hangay-Hentey Basin, North-Central Mongolia:Implications for the Tectonic Evolution of the Mongol-Okhotsk Ocean in Central Asia[J].Tectonophysics,2008,451:290-311.
The Tectonic Framework and Evolution of the NE China:from~500Ma to~180Ma
Zhou Jian-bo,Zeng Wei-shun,Cao Jia-lin,Han Jie,Guo Xiao-dan
CollegeofEarthSciences,JilinUniversity,Changchun130061,China
The basement rocks in parts of NE China constitute a khondalitic sequence of sillimaniteand garnet-bearing gneisses,hornblende-plagioclase gneiss and various felsic paragneisses.Zircon U-Pb dating of garnet-sillimanite gneiss samples from the Erguna,Xing’an,Jiamusi and Khanka blocks all indicate that high-grade metamorphism occurred at~500Ma.Evidence from detrital zircons in Paleozoic sediments from the Songliao block also indicates the former presence of a~500Ma component.This uniformity of U-Pb ages across all crustal blocks in NE China establishes a>1 300km long Late Pan-African khondalite belt with Pan-African syn-collisional granite,which we named here the‘NE China Pan-African Orogen’.This indicates the blocks of NE China were amalgamated prior to~500Ma,contrary to current belief.One scenario is that this amalgamated terrane had a tectonic affinity to the Siberia craton,once forming part of the Late Pan-African (~500Ma)Sayang-Baikal orogenic belt extensively developed around the southern margin of the Siberia craton.This belt was the result of collision between currently unidentified terranes with the Southeastern Angara-Anabar Province at about 500Ma,where the rocks were deformed and metamorphosed to granulite facies.It appears likely that at sometime after~450Ma,the combined NE China blocks rifted away from Siberia and moved southward to form what is now NE China.The combined block collided with the North China craton along the Solonker-XarMoron-Changchun suture zone at~230Ma rather than in the end-Permian as previously thought.Local rifting at the eastern extremity of the developing Central Asian orogenic belt(CAOB)resulted in the splitting away of the Jiamusi/Khanka(/Bureya)blocks.However,this was only transient and sometime between 210and 180Ma,and these were re-united with the CAOB by the onset of Pacific plate subduction,which we named here the “Jilin-Heilongjiang high pressure belt”and forming which has dominated the tectonic evolution of the region since that time.
NE China Ealy-Paleozoic orogen;Solonker-XarMoron-Changchun suture zone;Ji-Hei HP belt;combined NE China plates;tectonics
P54
A
1671-5888(2012)05-1298-19
2012-05-22
国家自然科学基金项目(40872121,41190075);中国地质调查局项目(1212011120153)
周建波(1966—),男,教授,博士生导师,主要从事大地构造学方面研究,E-mail:zhoujianbo@jlu.edu.cn。