彭 娟,刘文娟,杨 清
(扬州大学 数学科学学院,江苏 扬州 225002)
彭 娟,刘文娟,杨 清
(扬州大学 数学科学学院,江苏 扬州 225002)
亚纯函数; 微分从属; 卷积; 积分表示
(1)
且在去心单位圆U*={z:z∈C,0lt;|z|lt;1}=U{0}内p叶解析的函数f(z)组成的函数类.
我们定义如下函数φp(a,c;z):
(2)
(3)
(4)
从(1)和(4)可看出,
(5)
由(5)有
(6)
(7)
(8)
定义1 设f(z)∈Σp,若满足从属条件
特别地∂=0,有
为了证明主要的结论,我们需要以下的引理.
引理1[10]设β,γ∈C,h(z)在U内解析,凸单叶,并且
h(0)=1,R(βh(z)+γ)gt;0(z∈U).
如果p(z)在U内解析,p(0)=1,若满足
则
p(z)h(z)(z∈U).
(9)
进一步地,若
则
证明由
(10)
(11)
则
(12)
令
(13)
(14)
(15)
其中ω(z)在U内解析,ω(0)=0,|ω(z)|lt;1(z∈U).
(16)
其中ω(z)在U内解析,ω(0)=0,|ω(z)|lt;1(z∈U).
(17)
(18)
对(18)两边积分有
(19)
则
(20)
其中ω(z)在U内解析,ω(0)=0,|ω(z)|lt;1(z∈U).
其中ω(z)在U内解析,ω(0)=0,|ω(z)|lt;1(z∈U).
(21)
其中ωj(z)(j=1,2)在U内解析,ωj(0)=0,|ωj(z)|lt;1(z∈U;j=1,2).
(22)
其中ω1(z)在U内解析,ω1(0)=0,|ω1(z)|lt;1(z∈U).
(23)
(24)
其中ωj(z)(j=1,2)在U内解析,ωj(0)=0,|ωj(z)|lt;1(z∈U;j=1,2).
对(24)两边积分有
其中ω(z)在U内解析,ω(0)=0,|ω(z)|lt;1(z∈U).
致谢作者感谢刘金林老师的悉心指导!
[1]Aouf M K,Silverman H,Srivastava H M. Some families of linear operators associated with certain subclasses of multivalent functions[J]. Appl Math Comput,2008,55:535-549.
[2]Aouf M K. Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function[J]. Appl Math Comput,2008,55:494-509.
[3]Cho N E,Kwon O S,Srivastava H M. Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators[J]. J Math Anal Appl,2004,292:470-483.
[4]Cho N E,kim Y C,Srivastava H M. Argument estimates for a certain class of analytic functions[J]. Complex Variables,38:277-287.
[5]Liu J L,Patel J. Certain properties of multivalent functions associated with an extended fractional differintegral operator[J]. Appl Math Comput,2008,203:703-713.
[6]Liu J L. Some properties of certain meromorphically multivalent functions[J]. Appl Math Comput,2009,210:136-140.
[7]Liu J L,Srivastava H M. Class of meromorphically multivalent functions associated with the generalized hypergeometric function[J]. Math Comput Modelling,2004,39:21-34.
[8]Liu J L,Srivastava H M. A linear operator and associated families of meromorphically multivalent functions[J]. J Math Anal Appl,2001,259:566-581.
[9]Liu J L,Srivastava H M. A class of multivalently analytic functions associated with the Dziok-Srivastava operator[J]. Integral Transforms and Special Functions,2009,20(5):401-417.
[10]Miller S S,Mocanu P T. Differential subordinations and univalent functions[J]. Michigan Math J,1981,28:157-171.
[责任编辑:李春红]
PENG Juan,LIU Wen-juan,YANG qing
(School of Mathematical Science,Yangzhou University,Yangzhou Jiangsu 225002,China)
meromorphic functions; differential subordination; integral representation; integral operator
O174.5
A
1671-6876(2012)01-0022-04
2011-12-12
彭娟(1986-),女,湖北洪湖人, 硕士研究生,研究方向为复分析.