庞 婧 综述,徐文坚 审校
2011年度北美放射年会(RSNA)共有骨关节系统影像学研究文章457篇,其中关节影像学研究文章118篇,膝、髋、肩等大关节周围韧带、肌腱损伤及关节软骨方面研究,以MRI为主。四肢末端小关节及关节微结构研究相对较少,主要为MRI与MR关节造影对比研究。笔者对以上方面进行简要综述,以期对今后关节影像学研究提供些许帮助。
髋关节病变的影像学研究以MRI为主,MR关节造影多用于关节周围韧带及髋关节盂唇病变的显示。
股骨头圆韧带(ligamentum teres,LT)损伤是引起髋关节疼痛的原因之一,关节镜术前MRI检查可提示LT损伤。Aihara等[1]根据MRI特点,指出骨关节炎、髋关节脱位、髋臼骨折、股骨头血管改变等均可引起LT损伤。Choi等[2]则对162例LT的MR关节造影行回顾研究,认为MR关节造影对LT有无损伤的评估具有高度特异性。
股骨髋臼撞击综合征(femoroacetabular impingement,FAI)是股骨颈部或髋臼边缘异常、在髋关节旋转活动时引起反复创伤,导致的髋臼盂唇和关节软骨损伤。Rodriguez等[3]对FAI的成像方法进行了评价,指出常规X线检查和MRI检查可诊断髋臼盂唇边缘变性,MR关节造影可以准确评估盂唇撕裂和关节软骨破坏。Magerkurth等[4]用3D T1WI关节造影对15例股骨头颈结合部进行了研究,结果显示3D MR股骨头颈结合部短轴重建可全面评估Cam型FAI。
常规MRI在髋臼盂唇成像方面具有局限性,故常用MR关节造影以更好显示盂唇病变。Fiona[5]对55例57侧髋关节行MR关节造影,结果显示其对髋臼盂唇撕裂诊断具有高度敏感性,但对软骨破坏程度和盂唇分离无明显作用。Binkhamis等[6]对18例患者行1.5 T MR间接髋关节造影,尽管其无创伤,但结果显示间接造影在髋臼盂唇撕裂诊断中诊断价值有限。髋关节反复损伤可导致无创伤性髋关节疼痛及不稳,Magerkurth等[7]对27例受试者的MR关节造影横轴面T1WI与手术进行对照,研究证实髋关节松弛时,髋关节前间隙明显增宽,且增宽>5 mm时,可提示髋关节囊松弛。Kim等[8]对9例化脓性关节炎和11例一过性滑膜炎患者行动态增强MRI (dynamic contrast-enhanced MRI, DCE-MRI)检查,评估了DCEMRI在这2种疾病诊断中的敏感性及特异性,证实DCE-MRI对于鉴别关节化脓性关节炎与一过性滑膜炎是有效的。
在髋关节置换术后金属伪影去除方面,Sandhu等[9]对159例髋关节金属置换术后髋关节疼痛患者行MR MARS 成像,证实MR MARS成像可使髋关节金属置换术后金属伪影减小到最小程度,进而更好的显示周围软组织。
膝关节损伤研究主要以MR新技术评估软骨病变,尤其半月板病变为主,而在约12篇关于半月板病变的研究中,有9篇针对半月板撕裂。
在半月板撕裂的常规诊断方面,Nguyen等[10],De[11]分别通过MR及3D成像,将半月板撕裂类型与关节镜进行对照,Pandey等[12]同样与关节镜对照,并对半月板撕裂的命名标准进行了规范。Altahawi等[13]、Lee等[14]、Magee[15]分别用MR多平面重组(MPR)、三维各向同性中间加权快速自旋回波序列(isotropiintermediate-weighted turbo spin-echo sequence, TSE-SPACE)和3 T 3D XETA (Extended Echo-train)成像,对膝关节半月板撕裂进行评估,认为上述新技术更有助于显示半月板撕裂及类型,有助于指导手术。Sung[16]则对21例30个半月板行PDTSE成像,认为半月板出现MR高信号并非完全由半月板撕裂引起,半月板退变和膝关节腔放射状纤维束等也同样可以引起信号增高。
对于不典型半月板撕裂,Kristen等[17]对71例不典型半月板撕裂研究后指出,关节软骨缺失、半月板挤压、半月板旁软组织水肿、半月板囊肿、关节积液和软骨下骨髓水肿等继发征象有助于不典型半月板撕裂的诊断。
在半月板术后评估方面,Hwang等[18]对12例半月板移植患者于术后不同时期进行了T2 mapping检查,认为T2定量测量有助评估半月板移植后关节软骨修复情况。
相对于成人,青少年膝关节影像学研究相对较少,Bosemani等[19]对近100例年龄为14~20岁,平均年龄为16岁的青少年行膝关节3 T MRI检查,研究证实尽管3 T MRI对青少年半月板病变的敏感性较低,但其对软骨病变的敏感性和特异性较低场强MRI高,故3 T MRI可用于青少年膝关节软骨病变检查,进而指导软骨病变关节镜治疗。
膝关节前、后交叉韧带是维持膝关节稳定性的重要结构,而对交叉韧带的MRI研究不仅包括韧带受损的病因,更多研究关注于交叉韧带损伤所引起的周围结构改变和韧带损伤术后组织结构的MRI表现。Gupta等[20]对前交叉韧带(anterior cruciate ligament, ACL)损伤的机制和类型进行归纳,阐述了MRI对可疑ACL损伤、完全和不全ACL损伤、ACL再造术中的诊断价值,并对MRI参数的优化进行了初步探讨。Botchu[21]对95例膝关节内紊乱患者的MRI进行回顾性研究,分析股骨滑车发育异常与ACL损伤的相关性,证实ACL损伤与Dejour(尤其A型)滑车发育不良虽无明显相关性,但可以推测Dejour A型滑车发育不良可诱发ACL损伤。Wissman等[22]对70例急性ACL撕裂患者行膝关节MRI检查,得出只有在急性ACL撕裂并出现内侧副韧带损伤时,才会伴有内侧髌股韧带损伤,故当急性ACL撕裂后,若在MRI检查中发现内侧副韧带损伤,应同时注意有无内侧髌股韧带损伤。
对ACL损伤再造术后膝关节功能的研究亦引起较多关注。膝前关节囊松弛MRI征象对先天和再造后ACL撕裂有高度特异性和敏感性,Gupta等[20]对49例前交叉韧带完全移植再造后的膝关节行MRI研究,对膝关节松弛的MRI征象(包括胫骨前移、后交叉韧带线状影、股骨后线、后交叉韧带和曲率、外侧半月板剥脱等)进行评估,发现完全ACL移植患者膝关节松弛的MRI征象相对于临床膝关节松弛的敏感性较低且变异性较大,膝关节松弛的MRI表现可能是由于ACL移植时拉伸不足使膝关节正常生物力学改变所致。Cha等[23]对100例应用残束保护技术行关节镜ACL再造和36例应用单束保护技术ACL再造的术后膝关节MRI进行了对比分析,证实2种手术方式后ACL前壁局限性纤维化的MRI征象均为在矢状面上中等信号强度的结节样突出于髁间窝的病变,且两者发生率并无明显差异,这一对比分析可以有助放射医师依据MRI征象更好的诊断局限性纤维化。
后交叉韧带(posterior cruciate ligament, PCL)在屈膝时紧张,可防止胫骨后移。Song等[24]对173例PCL撞击患者行MRI冠状扫描,以评估PCL撞击的发病率及MRI上PCL撞击和其他膝关节韧带损伤之间的关系。研究结果表明,PCL撞击在统计学上与PCL撕裂和腘肌撕裂有显著相关性,而与ACL、内侧副韧带(medial collateral ligament, MCL)、腓侧副韧带( fibular collateral ligament, FCL)和内外侧半月板损伤无明显相关性。因此,若在膝关节MRI冠状面上观察到PCL撞击,提示可能有PCL和腘肌撕裂。
MCL构成膝关节囊内侧壁,对维持膝关节稳定性起到重要作用。Pirani等[25]对42例无外伤史但存在MCL水肿的患者行MRI研究,证实MCL水肿并非韧带扭伤所特有,内侧关节腔骨关节病或内侧半月板撕裂亦可致MCL水肿;而在无外伤史且无上述病史时,肥胖所致承重增大或膝关节生物力学改变同样可致MCL水肿。
腘肌是膝关节中相对较小但较重要的肌肉,可使膝关节屈曲并使小腿内旋。腘肌病变往往不像半月板和韧带那样受到重视,但可以为膝关节的其他损伤提供诊断线索。诊断不及时可导致膝关节功能退化,其炎性改变可引起膝关节疼痛,故在影像学研究中应加强对其认识。Jadhav等[26]从腘肌解剖、功能、影像及病理相关性等方面应用三维图解描述腘肌病变的影像学特点,并对MRI中易误诊病变进行了阐述。
髌骨参与膝关节构成,具有保护膝关节,避免股四头肌对股骨髁软骨面摩擦,且可维持膝关节稳定性和防止膝关节过度活动。膝前疼痛及髌骨对合不良是临床行X线和CT检查最常见的原因之一,尽管髌骨定比测量在X线上研究较多,但在CT和MRI上关于髌骨高度的参照尺度尚无统一结论。Lee等[27]对43例受试者同时行膝关节X线、CT和MRI检查,结果显示髌骨高度比指数在X线、CT和MRI上差异微小,故X线髌骨定比测量方法同样适用于CT和MRI。Cobo等[28]指出髌骨不稳虽为一种临床诊断,但影像学表现在治疗中起重要作用,对髌骨不稳患者行动态CT研究显示,动态CT可评估大腿伸缩和膝关节屈曲时的髌骨运动情况,可更好地对髌骨半脱位及其严重性和倾向因素进行评估。Padua等[29]则对MRI在髌骨软化症中的意义进行了探讨,分析了最佳成像序列和成像模式,可为放射医师提供髌骨软化症诊断的解剖和分类依据。
踝关节韧带损伤易导致关节不稳,但显示及辨认困难。Sheibanifar[30]用1.5 T MR对127例踝关节行3D PDWI,结果显示3D PDWI可清楚显示踝关节韧带损伤。Song等[31]对44例踝关节用3T MR 3D FSTSE-SPACE与常规2D TSE成像对比,证实2种成像方式均可用于踝关节慢性侧副韧带撕裂诊断。Chang等[32]应用3 T MR超短TE(ultrashort TE,UTE)成像对10例无症状志愿者跟腱进行了T2值定量评估,研究显示UTE T2技术可评价早期肌腱退变和肌腱修复。Tuan[33]则应用X线成像及MRI对9例踝关节扭伤患者进行随访,指出早期发现踝关节韧带钙化可以使病变得到早期修复,而对于诊断标准以下的韧带联合损伤识别其早期损伤征象如胫腓后韧带骨化等,可以使诊疗变得更加精准。
在踝关节术后伪影去除方面,Lee等[34]对21例踝关节术后有金属植入物患者行多种序列对比分析,指出尽管IDEAL成像没有明显改善韧带的显示,但可有效减少金属固定物引起的伪影,改善图像质量,利于临床治疗及护理。
肩关节结构复杂,MRI可清晰显示骨质、盂唇、韧带、肌肉、肌腱等结构及病变,已被公认,而常规X线检查可发现病变伴发征象,从而具有辅助诊断作用。
肩袖病变仍然是肩关节影像学研究中的焦点问题。Pandey等[35]对195例肩关节X线图像进行研究,指出充分外旋和Grashey位时肱骨大结节骨皮质不规则改变对于提示冈上肌腱病变具有高度特异性,但敏感性有限。Magee[36]对150例常规MRI和MR关节造影进行比较,结果显示MR关节造影对冈上肌腱撕裂的显示优于常规MRI。有关儿童肩袖撕裂患者文献报道较少见,Maeder等[37]对56例男性(平均年龄15岁)和42例女性(平均年龄16岁)行肩关节X线、MRI及MR关节造影等研究,指出儿童肩袖撕裂比文献报道的要常见,且易发生在骺板愈合时期,撕裂的部位和分布与成人相似,故对所有肩关节痛儿童患者均应行MRI检查。
在肢体大关节中,肘关节影像学研究较少。Jasti等[38]对500例肘关节疾病患者的MRI及临床资料进行了回顾研究,初步观察了肘关节疾病的发病率和疾病类型,指出41~60岁易发生肌肉及肌腱撕裂,以肱二头肌腱撕裂伴发肱三头肌腱损伤常见,多发生于男性。该作者进一步指出,尽管肘关节MRI约有20%为正常,但90%以上的肘关节病变需要依靠MRI诊断。
腕关节体积小而结构复杂,显示及辨认同样存在困难。Abdelfattah[39]对50例慢性尺侧腕关节疼痛患者的1.5 T MRI及病理对照分析,指出MRI可用于术前鉴别尺侧腕关节疼痛的病因,包括三角纤维软骨(triangular fibrocartilage complex,TFCC)撕裂,尺侧腕伸肌病变、远侧尺桡关节松弛、腱鞘囊肿、神经纤维瘤、巨细胞瘤、滑膜囊肿、骨软骨瘤、尺骨撞击综合征、尺腕撞击、钩月撞击、滑膜肉瘤等。Raja等[40]对189例无症状志愿者行1.89 T MR腕关节成像,结果表明大多数(65%)的腕关节无症状志愿者MRI存在尺侧腕伸肌肌腱异常,然而此结论需与患者真实临床症状相关联以确定两者是否真正相关。
相对常规MRI,Spencer[41]证实MR关节造影可为先天性腕关节不稳和韧带撕裂提供良好的诊断依据,可提供清楚的解剖显示。Koskinen等[42]、Bierry等[43]研究显示在患者禁行MRI或常规多排螺旋CT时,新型移动专用肢体锥束CT在腕关节韧带和关节软骨损伤方面可提供良好的成像质量。DTI以往多用于脑白质纤维束成像,Andreisek[44]应用3 T MR对45例健康志愿者和15例腕管综合征(carpal tunnel syndrome,CTS)的正中神经进行了DTI,结果显示正中神经扩散值与年龄和解剖位置有关,正常人和CTS患者之间有明显不同。Lindberg等[45]和Lobo等[46]分别对16例和8例CTS松解术后复发患者进行了DTI,结果显示DTI定量测量可用于复发性CTS患者的正中神经评估。
相对于大关节影像学研究,对小关节的影像学研究相对较少。Welsch等[47]应用关节软骨钆对比剂延迟强化MRI(delayed Gadolinium MRI of cartilage,dGEMRC)对类风湿性关节炎(rheumatoid arthritis,RA)患者指间关节进行了评测,并将T1 mapping所得T1值与患者病程、C-反应蛋白、ESR、DAS28、RF、CCP等临床及实验室检查资料相对照,研究表明RA患者指间关节软骨dGEMRC T1值的降低与病程有关(病程≥5年),RA活动性和RF、CCP阳性与RA患者掌指关节软骨蛋白聚糖丢失有关。足部扭伤后距下关节不稳可致足部疼痛,其最常见原因为足内翻和足外翻,但此类病变临床评估困难,目前为止文献中无可靠的影像诊断标准,Lux等[48]对15例足部扭伤后慢性疼痛患者和15名健康志愿者距下关节行动态CT检查,测量距跟前角、跟骨后软骨表面剥脱、跟骨载距突和距骨后突内侧结节之间幅度及最大距跟间距,结果显示动态CT检查可以对结构复杂的距下关节进行生物力学评估,并能为距下关节病变,尤其是距下关节不稳,提供更为客观的诊断标准。
关节软骨UTE成像可选择性突出显示短T2成分。Du等[49]应用3 T双梯度MR 2D UTE(8 μs)多回波序列对5名健康志愿者膝关节软骨及半月板中长T2成分(结合水)、短T2成分(自由水)进行量化研究,结果显示多回波UTE可对半月板和关节软骨自由水和结合水进行定量显示,有助于骨关节炎的早期诊断。
T2 mapping是基于T2弛豫时间的成像技术,可更直观地显示不同体素T2值的后处理图像。有学者用3.0 T MR 8通道腕关节线圈,对8例健康者腕关节软骨T2弛豫时间进行测量,发现腕关节旋转运动对桡腕关节和尺桡远侧关节软骨T2值有一定影响。
Schuetz[50]用车载1.5 T MR T2 mapping技术对22例马拉松运动员进行了不同时段动态MRI检查,结果显示所有受试者在最初2 km比赛后即刻,股骨、胫骨和髌骨表层软骨信号强度明显增高,而深层软骨未见信号增高;在后2 km比赛中后即刻,增高的信号强度减弱;关节软骨厚度在比赛过程中未见差异。赛后6个月复查,显示T2*信号完全恢复。作者认为受训运动员进行超负荷运动对其肢体软骨并无不良影响。
23Na MRI技术近年来被用于软骨损伤的研究,由于软骨组织中Na离子以糖胺聚糖的形式存在,对软骨糖胺聚糖含量的检测可以推断软骨的退变、损伤和修复,以评估和指导临床相关治疗。23Na MRI技术可以根据Na分布图像间接显示蛋白多糖崩解的区域。Mayerhoefer[51]应用7 T MRI对9例膝关节骨髓刺激(bone marrow stimulation,BMS)治疗后患者和9例自体软骨细胞移植(matrix-associated autologous chondrocyte transplantation,MACT)治疗后患者进行研究,结果显示MACT治疗后患者软骨糖胺聚糖含量较BMS治疗后患者多,MACT治疗后患者软骨修复能力强于BMS治疗后患者,作者认为7 T MR23Na成像可作为非侵入性检查用于关节软骨修复的评估。
纵观2011年RSNA骨关节系统影像学研究报道,关节影像学研究约占1/4,研究内容以髋、膝等大关节为主,包括关节周围韧带、关节软骨及关节术后影像学评估,成像技术多以CT及MRI,尤以MRI新技术应用研究为主,包括DWI、DTI、T2 mapping、超短TE成像、MR动态增强、MR关节造影等,值得国内学者学习借鉴。
[References]
[1] Aihara AY, Paulo S, Yanaguizawa M, et al. Ligamentum teres: anatomy review and imaging evaluation. Chicago:RSNA, 2011: LL-MKE2046.
[2] Choi J, Cha J, Lee G. et al. Evaluation of ligamentum teres (LT) on MR arthrography (MRA) in patients with clinically suspected FAI: with arthroscopi correlation.Chicago: RSNA, 2011: LL-MKS-WE2A.
[3] Rodriguez VB, Olalla C, Guadilla AJ, et al.Femoroacetabular impingement: imaging strategies and characteristics. Chicago: RSNA, 2011: LL-MKE2036.
[4] Magerkurth O, Jacobson JA, Morag Y, et al.Femoroacetabular CAM type impingement: assessment of the femoral head neck junction on a single image with 3D MR. Chicago: RSNA, 2011: LL-MKS-TH6A.
[5] Fiona C. Utility of Magnetic Resonance Arthrography of the Hip, in the Diagnosis of Labral and Chondral Pathology. Chicago: RSNA, 2011: MSVS41.
[6] Binkhamis SM, Schweitzer ME, Beaule PE, et al. The accuracy of indirect mr arthrography of the hip in detecting acetabular labral tears. Chicago: RSNA, 2011: LL-MKSWE5A.
[7] Magerkurth O, Jacobson JA, Morag Y. Capsular laxity of the hip: findings at MR arthrography. Chicago: RSNA,2011: LL-MKS-WE5B.
[8] Kim E, Kwack K, Cho J, et al. Usefulness of dynamic contrast-enhanced MRI in differentiating between septic arthritis and transient synovitis in the hip joint. Chicago:RSNA, 2011:SSG09.
[9] Sandhu R, Satchithanada K, Hart A, et al. Metal artefact reduction sequence (MARS) MRI of painful metal-onmetal hips: beyond the pseudotumor. Chicago: RSNA,2011: LL-MKE2146.
[10] Nguyen JC, Rosas HG, De SA, et al. What is in a tear:diagnosis and classification of meniscal tears. Chicago:RSNA, 2011: LL-MKE2057.
[11] De S. MR imaging appearance of the types of meniscal tears with arthroscopic correlation. Chicago: RSNA, 2011:MSVS31.
[12] Pandey S, Wong E, Roth CG, et al. Vertical? Vertical-Longitudinal? Longitudinal? What do I call the tear? A review of meniscal tear nomenclature and a proposed standardized Nomenclature. Chicago: RSNA, 2011: LLMKE2193.
[13] Altahawi F, Saluan P, Subhas N, et al. Display tool for radial multiplanar reconstructions of isotropic knee MR:development and initial experience. Chicago: RSNA, 2011:SSE15.
[14] Lee S, Jee W, Jung J, et al. Isotropic 3D intermediateweighted turbo spin-echo MR imaging of the knee at 3.0 T: fat-suppression vs without fat-suppression. Chicago:RSNA, 2011: SSE15.
[15] Magee TH. Comparison of 3 tesla 3D XETA MR imaging of the knee vs conventional MR imaging of the knee.Chicago: RSNA, 2011: SSE15.
[16] Sung H. Causes of high signal intensity changes of the meniscus on MR images: correlation with histologic examination. Chicago: RSNA, 2011: MSVS31.
[17] Kristen E, Roth CG, Zoga AC, et al. "Borderline" Meniscal tears: incidence of secondary soft tissue and osseous findings on MRI. Chicago: RSNA, 2011: MSVS31.
[18] Hwang Y, Lee S, Chung H, et al. T2 mapping of articular cartilage in patients of meniscus transplantation:comparison between immediate postoperation and sixmonth follow-up. Chicago: RSNA, 2011: SSA14.
[19] Bosemani T, Durand D, Huisman T, et al. 3 T MRI of pediatric adolescent knees: our initial experience. Chicago:RSNA, 2011: LL-MKS-MO7B.
[20] Gupta SK, White LM, Jacks L, et al. Magnetic resonance imaging (MRI) signs of anterior knee laxity in the presence of an intact graft following anterior cruciate ligament(ACL) reconstruction. Chicago: RSNA, 2011: SSE15.
[21] Botchu R. Trochlea dysplasia: association with ACL injuries. Chicago: RSNA, 2011: MSVS31.
[22] Wissman RD, Kapur S, Hendry DS, et al. Extensor mechanism injuries in acute anterior cruciate ligament tears. Chicago: RSNA, 2011: LL-MKS-MO7A
[23] Cha J, Choi S, Kwon JW, et al. Analysis of Cyclops lesions after different anterior cruciate ligament reconstructions:a comparison of the single-bundle and remnant bundle preservation techniques. Chicago: RSNA, 2011: MSVS31.
[24] Song Y, Lee S, Joo K, et al. Impingement of posterior cruciate ligament on coronal scans of knee MRI: is this a secondary sign of tear or normal variant inthe posterior cruciate ligament? Chicago: RSNA, 2011: MSVS31.
[25] Pirani Y, Shukla M, Malhotra AD, et al. The role of obesity in super ficial medial collateral ligament edema in the atraumatic setting. Chicago: RSNA, 2011: LL-MKSTU4A.
[26] Jadhav SP, More SR, Riascos R, et al. Popliteus: a comprehensive review of anatomy, function, and imaging of popliteus and associated pathologies with 3D illustrations. Chicago: RSNA, 2011: LL-MKE2038.
[27] Lee PP, Chalian M, Thawait GK, et al. Multimodality measurements of patellar height on X-ray, CT, and MRI.Chicago: RSNA, 2011: LL-MKS-TU5B.
[28] Cobo RM, Salazar C, Sabaneeff A, et al. Dynamic CT imaging of patellar instability: characterization and predisposing anatomic factors. Chicago: RSNA, 2011: LLMKE2137.
[29] Padua SO, Lopez-Alvarez YM, Baussan S, et al.Navigating the pits and crevasses of the patellar surface: a primer on patellar chondromalacia. Chicago: RSNA, 2011:LL-MKE2162.
[30] Sheibanifar M. Optimized 3D sequence on MRI for the ankle ligamentary lesions: 2 years of experience. Chicago:RSNA, 2011: LL-MKE2076.
[31] Song H, Jee W, Jung J, et al. Chronic lateral collateral ligament tears of the ankle: diagnosis with 3D isotropic turbo spin-echo SPACE sequence vs conventional 2D TSE sequences at 3.0 T. Chicago: RSNA, 2011: SSJ15.
[32] Chang EY, Bae WC, Biswas R, et al. To provide a noninvasive quantitative means of evaluating achilles tendon T2 values using 3 T MR UTE techniques in asymptomatic volunteers: quantitative MRI characterization of the achilles tendon—T2 measurements using ultrashort echo time (UTE) MR. Chicago: RSNA,2011: SSA14.
[33] Tuan A. Hindsight is 20/20: ossification of the posterior tibiofibular ligament on follow-up ankle radiographs reclassifies traumatic ankle injury from a low to high sprain. Chicago: RSNA, 2011: LL-MKS-WE4B.
[34 ] Lee J, Cha J, Lee M, et al. Usefulness of IDEAL MR imaging in reducing metallic artifacts in the postoperative ankles with metallic hardware. Chicago: RSNA, 2011:SSJ15.
[35] Pandey S, Driban JB, Huang TL. et al. Does shoulder radiography predict rotator cuff abnormality? Examination of greater tuberosity cortical irregularity as an indicator for surpaspinatus pathology. 2011: LL-MKS-TH5B .
[36] Magee TH. MR vs MR arthrography in detection of supraspinatus tendon tears in patients without previous shoulder surgery. Chicago: RSNA, 2011: LL-MKS-WE3A.
[37] Maeder M, Zbojniewicz AM, Emery KH, et al. Spectrum and incidence of rotator cuff tears in pediatric patients at a large tertiary care hospital. Chicago: RSNA, 2011: SSQ14.
[38] Jasti S, Badillo K, Farouga AF, et al. Distribution of disease around the elbow on MRI: preliminary observations.Chicago: RSNA, 2011: LL-MKS-TU7A.
[39] Abdelfattah S. Diagnostic role of MRI in assessing patients with ulnar sided wrist pain. Chicago: RSNA, 2011:MSVS41.
[40] Raja FS, Garvin GJ, Osman S. Prevalence and spectrum of magnetic resonance imaging (MRI) findings involving the extensor carpi ulnaris (ECU) tendon in asymptomatic wrists. Chicago: RSNA, 2011: LL-MKS-WE6A.
[41] Spencer C. Demonstration of the anatomy of the extrinsic carpal ligaments of the wrist using MR arthrography.Chicago: RSNA, 2011: LL-MKE1057.
[42] Koskinen SK, Haapamäki V, Salo J, et al. CT arthrography of the wrist using a novel mobile dedicated extremity cone beam CT (CBCT). Chicago: RSNA, 2011: LL-MKSTU1A.
[43] Bierry G, Ramdhian-Wihlm R, Minor JL, et al. Conebeam computed tomography arthrography: an innovative alternative to MDCT arthrography of the wrist? Chicago:RSNA, 2011: LL-MKS-TU1B.
[44] Andreisek G. Diffusion tensor imaging of the median nerve at 3.0 tesla: normative and pathologic diffusion values.Chicago: RSNA, 2011: SSK10.
[45] Lindberg P, Feydy AA, Drape J, et al. Relation between diffusion tensor imaging, electromyography, and grip force control in patients with recurrent carpal tunnel syndrome after surgical release. Chicago: RSNA, 2011: SSK10.
[46] Lobo LG, White LM, Khanna M, et al. Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Chicago: RSNA, 2011: LL-MKS-WE6B.
[47] Welsch GH, Renner N, Janka R, et al. Imaging of microstructural cartilage changes in the finger joints of patients with rheumatoid arthritis by means of delayed gadolinium MRI of cartilage (dGEMRIC): initial clinical results.Chicago: RSNA, 2011: LL-MKS-WE7A .
[48] Lux G, Souza MR, Osemont B, et al. dynamic computed tomography of the subtalar joint. Chicago: RSNA, 2011:SSJ15.
[49] Du J, Bae WC, Pauli C, et al. In vivo ultrashort TE (UTE)imaging of the knee joint with bi-component analysis.Chicago: RSNA, 2011: SSA14.
[50] Schuetz UH. Changes of cartilage surface in knee, ankle,and hindfoot joints in ultra-endurance runners during 4.487 km trans europe foot race measured by mobile MRI on a truck. Chicago: RSNA, 2011: SSA14.
[51] Mayerhoefer. Evaluation of23Na (Sodium) content in native hyaline cartilage and repair tissue after two cartilage repair techniques in the knee with 7 T MR imaging.Chicago: RSNA, 2011: MSVS31.