张 超,淡淑恒,李翔宇,唐新龙
(1.上海电力学院,上海 200090;2.江苏邳州供电局,江苏 邳州 221300)
近年来,一种用于真空断路器的永磁保持、电子控制的电磁操动机构(永磁操作机构)备受关注.根据其工作原理可以分为双稳态和单稳态永磁机构,由于单稳态永磁机构的分闸速度特性具有刚分点前加速、刚分点后减速的优点,在12 kV中压真空断路器中得到了逐步应用,而且单稳态永磁机构通过合理设计弹簧,采用永磁保持、电磁合闸及弹簧分闸,较完美地实现了断路器不同操动技术的理想结合[1].
在传统的单稳态永磁机构中,永磁体提供的永磁吸力不参与合闸过程,而且提供阻力,因此要求电源提供较大的励磁电流.另外,励磁线圈和永磁体为上下布置,为了得到较大的合闸保持力,必须加大永磁体的体积,这将直接影响永磁操动机构的整体体积,不利于真空断路器的小型化.
本文针对直动式12 kV真空断路器,介绍了一种励磁线圈和永磁体左右布置的改进型单稳态永磁机构[2],如图 1 所示.
图1 两种单稳态永磁机构原理
传统的VM1型永磁机构驱动杆通过拐臂与真空灭弧室连接,在分闸位置靠永磁体提供的静态永磁吸力保持.改进型单稳态永磁机构的动铁芯通过绝缘拉杆直接连接灭弧室侧的动导电杆,在分闸位置时由预压缩的分闸弹簧提供保持力,改进型单稳态永磁机构如图2所示.
图2 改进型单稳态永磁机
在利用Ansoft Maxwell软件包[3]对单稳态永磁机构动铁芯瞬态电磁场动态过程分析的基础上,基于 ADAMS虚拟样机技术,在 Matlab Simulink平台上进行了多场耦合仿真.
单稳态永磁机构分合闸的动态过程,是由电磁场、电路和运动多场耦合作用的过程.动铁芯所受的电磁力Fmag和线圈耦合磁链φ可以描述为:
式中:s——动铁心位移;
i——励磁电流.
使用Ansoft中的瞬态磁场分析模块,通过Maxwell Circuit Editor将励磁电路耦合,求解动铁芯电磁力和线圈耦合磁链.通过二维数据网格变换和3次样条非线性拟合技术获得永磁机构动态特性仿真所需的上述关系.
改进型单稳态永磁机构分合闸时共同使用一个励磁线圈,其等效电路如图3所示.
图3 改进型单稳态永磁机构控制电路
以合闸过程为例,励磁回路电压平衡方程为:
式中:Uc——电容电压;
i——励磁电流;
s——动铁芯位移;
C1——合闸电容.由式(2)和式(5)可以推导出电流关于位移与速度的函数关系式[4]:
ADAMS技术采用了广泛流行的多刚体动力学理论中的拉格朗日方程方法,建立系统的动力学方程[5].本文设计的永磁机构用于开断的电流为12.5 kA,动触头行程为12 mm,超程为5 mm的12 kV真空断路器,根据触头接触压力与开断电流大小的关系[6],取触头压力为500 N,相应的触头弹簧刚度系数为110 N/mm,触头弹簧刚度系数为40 N/mm.按照图2所示在ADAMS view中建立几何模型,并在运动部件上添加滑移副,同时在动导电杆与动触头之间添加阻尼弹簧,在动触头与静触头之间定义碰撞力.将生成的adams_sub模块作为控制模块导入Matlab Simulink进行联合仿真.根据式(6)建立电磁模块Subsystem子系统,由动铁芯位移和速度计算出电流值,二维查表模块根据位移和电流值查找到相对应的电磁力,并将该电磁力作为adams_sub模块的输入值,最后将经过联合仿真输出的动铁芯位移和动铁芯速度反馈到电磁模块中.联合仿真模型见图4.
图4 动态联合仿真模型
触头弹簧的合理配置对真空断路器分合闸特性的影响非常大.在动触头合闸之前,由于触头弹簧为柔性连接件,永磁机构输出的力通过触头弹簧再传递给动触头,从而使动触头在闭合前产生振动,即预振动.预振动不但会使开距不按永磁机构动铁芯行程预订的规律变化,而且对合闸弹跳有直接影响.ADAMS中对弹簧的模型描述为:
式中:k——弹簧的刚度系数;
r,r0——弹簧的长度和初始长度;
c——阻尼系数;
f——预载荷.
在不考虑阻尼系数时,得到的合闸过程中动铁芯和动触头的位移速度曲线如图5所示.由图5可知,无阻尼时动铁芯和动触头的同步性很差,不满足真空断路器的动作要求.设置阻尼系数为固定值时,得到两者的速度曲线见图6.
图5 无阻尼时动铁芯和动触头的位移
图6 阻尼系数恒定时动铁芯和动触头的速度
从图6可以看出,合闸前动触头和动铁芯的速度相差很小,但是由于阻尼系数比较大,使得动铁芯超程阶段花费时间较长,且碰撞后有很大速度的反弹.
为了获得更加理想的结果,将阻尼系数定义为变系数,ADAMS中可以设置阻力系数为动铁芯运动速度的函数.由式(7)可知,在合闸前提供给动触头运动的力,仅由-c·dr/dt这一项提供.根据牛顿定律,使两者都产生同样的加速度,可求得动触头受力为动铁芯受力的1/3,即c=Fmag/3v.通过ADAMS将阻尼系数c定义为SPLINE,并添加到弹簧属性中进行联合仿真,优化后合闸过程中动铁芯和动触头的速度曲线如图7所示.
图7 优化后动铁芯和动触头的速度曲线
从图7可以看出,动铁芯和动触头的跟随性显著提高,动铁芯走完超程所花的时间明显减少.
真空断路器分合闸速度特性要求为:平均分闸速度和刚分速度分别为1.3~1.7 m/s和0.8~1 m/s,平均合闸速度为 0.75 ~0.95 m/s.表 1 为利用联合仿真模型计算得到的仿真结果,其中动触头弹簧安装在导电杆与动触头之间(动端).
表1 不同电容和分闸弹簧组合时分合闸速度特性(动端安装触头弹簧)
由表1可知,当分闸弹簧系数扩大1倍,电容扩大10倍时,平均合闸速度v合降低了33.63%;当弹簧系数降低1倍,电容扩大5倍时,平均合闸速度几乎不变,这说明分闸弹簧参数对合闸过程的影响较大.根据对合闸速度的要求,分闸弹簧系数一般在40~80 N·mm范围较为合适.若最大刚分速度要求为1.7 m/s,则分闸弹簧刚度系数取60 N·mm为宜.综合分合闸速度特性,此单稳态永磁机构分闸刚度系数取60 N·mm,合闸电容取220 mF时,得到优化后的动触头分合闸速度与行程的关系曲线如图8所示.
图8 动触头分合闸速度与行程的关系
将触头弹簧安装在灭弧室处(静端)时,得到的仿真结果见表2.当分闸弹簧刚度系数为40 mm,电容为22 mF时,动触头刚分速度为1.16 m/s,平均分闸速度为1.24 m/s,平均合闸速度为1.08 m/s,这也满足真空断路器分合闸要求.与动触头安装在动端侧相比,平均分闸速度有所下降.
表2 不同电容和分闸弹簧组合时分合闸速度特性(静端安装触头弹簧)
(1)在计算永磁机构离散磁链φ(s,i)和吸力Fmag(s,i)数据方面,Ansoft瞬态电磁场有限元分析减少了工作量,提高了仿真的速度.
(2)在ADAMS与Matlab联合仿真中,触头弹簧对真空断路器的分合闸性能有不同程度的影响,在合闸过程中根据永磁机构空载的出力特性确定触头弹簧的阻尼系数,可以减弱动触头的预振动.
(3)单稳态永磁机构中,分闸弹簧的刚度系数对真空断路器的分合闸特性有很大影响,合闸电容越大,平均合闸速度也越大.在满足合闸速度要求时,选取适当的分闸弹簧可以提高刚分速度.
(4)通过对两种触头弹簧安装方式的仿真计算得知,触头弹簧安装在动端侧有利于提高刚分速度,而安装在静端侧有利于降低刚合速度,减少对真空灭弧室的冲击力.
[1]林莘.永磁机构与真空断路器[M].北京:机械工业出版社,2002:11-20.
[2]NITU S,NITU C,DYNAMIC Gh,Tuluca,et al.Behavior of a vacuum circuitbreakermechanism[J].Dischargesand Electrical Insulation in Vacuum,2008,30(1):181-184.
[3]赵博,张洪量.Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010:12-16.
[4]周丽丽,方春恩,李伟,等.27.5 kV永磁机构真空断路器动作特性仿真与试验研究[J].高压电器,2008,44(3):214-216.
[5]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2008:20-26.
[6]孟凡钟.真空断路器实用技术[M].北京:中国水利水电出版社,2009:134-135.