赵晓飞 张宏志 左旺孟 张大鹏
摘要: 图像复原旨在根据退化图像重建高品质原始图像,其复原的质量和速度问题一直都是图像处理领域研究的重要方向。由于其图像边缘保持特性,全变分(TV)最小化模型在图像复原领域取得了很大的成功。然而,全变分图像复原是一个典型的非光滑优化问题,需要发展相应的快速优化算法,而增广拉格朗日方法(ALM)则是近年来发展起来的一类代表性方法。结合相关进展,综述了全变分图像复原模型,变量分裂(VS)法和典型ALM算法,并通过实验从CPU运行时间、峰值信噪比(PSNR)和品质评价等方面分析了不同的变量分裂和ALM方法对图像复原性能的影响。