河海大学文天学院电气信息工程系 吴祥飞 杨 军
近一些年来,随着微电子技术和工艺、磁性材料科学以及烧结加工工艺与其它边沿技术科学的不断改进和快速发展,开关稳压技术,有了突破性进展,并且由此也产生了许多能提高人们生活水平和改善人们工作和学习条件的新工艺产品,如电动自行车,逆变焊机等设备。开关稳压电源以其独有的体积小、效率高、重量轻、输出形式多样化、功率因数大,稳压范围宽等优点已经涉及到了与电有关的所有领域。在这个领域之中,开关稳压电源已取代前级线性稳压电源和前级相控开关电源,此外,开关稳压电源技术和实用技术产品出现后,使得许多电子产品所采用的电池供电成为可能,是许多电子产品微型化和小型化后变为便携式产品成为可能。所以开关稳压电源成为各种电子设备和系统高效率、安全可靠运行、低功耗的关键,同时开关稳压电源技术已成为电子技术中备受人们关注的科技领域。
方案一:题目要求设计并制作一个由两个额定输出功率均为16W的8VDC/DC模块构成的并联供电系统。由题目已知,采用TI公司的脉宽调制控制器UC3843作为BUCK型拓扑的PWM控制芯片。UC3843集成电路的一般特性及由它组成小功率开关电源的方法。它是通过高性能固定频率电流模式的控制器专为离线和直流变换器应用所设计的,只需要最少外部元件就能获得成本效益高的方案。电流工作频率能到500KHZ,能进行温度补偿的参考电流取样比较器,精确的占空比控制和大电流图腾柱式输出是驱动MOSET管得理想元器件,并且UC3843具有自动锁存脉宽调制的功能有利于电流比的设定。
图1 系统框图
图2 方案一软件流程图
图3 系统组成框图
图4 单端反激DC/DC变换器电路拓扑
图5 窄带的电流放大器
图6 无功耗限流电路
图7 测试连接图
优点:以MSP430单片机为主控制器和PWM信号发生器,能根据反馈信号对PWM信号做出调整,从而实现稳压输出。系统输出电压8.0+0.4V可调,可以通过键盘设定和步进调整,电压调整率和负载调整率低,DC/DC变换器能达到较高的效率。
方案二:利用单片机MSP430,以电压型PWM控制器TL494为核心,设计一种稳压输出开关电源,其回路控制器方框图如图1,2,这种方案虽然实现起来较为灵活,可以通过调试针对本身系统做出配套的优化,但是系统调试比较复杂。鉴于此,我们选择方案一。
方案一:利用PWM专用芯片产生PWM控制信号。此法较易实现,工作较稳定,但不易实现输出电压的键盘设定和步进调整。
方案二:利用单片机产生PWM控制信号。让单片机根据反馈信号对PWM信号做出相应调整以实现稳压输出。这种方案控制系统软件编程工作量较小,难度不是很大,用脉宽调制型的控制器实现PWM控制,并且完全由硬件产生高频脉冲,实时性比较好,单片机控制的任务较轻,对单片机硬件资源要求不高,实现起来较为灵活,可以通过调试针对本身系统做出配套的优化。但是此方案硬件电器设计难度较大,电路板布线工作量较大,系统调试比较复杂。
根据要求选择方案二。单片机和脉宽调制型控制器共同实现整个系统的控制。系统组成框图如图3所示,脉宽调制器产生高频脉冲直接DC/DC变换模块,单片机实现液晶显示、AD/DA转换、、处理电压反馈信号、过流保护、对脉宽调制器进行控制、显示等功能;过流保护电路负载电流不超过2.5A;负载电压负反馈电路进一步对负载电压进行精确控制。
DC/DC变换器稳压方法:
单端反激DC/DC变换器电路拓扑电路的原理:变压器T1所引起的隔离和传递存储能量的作用,即使在开关管VT开通的时候,Np会存储能量,当开关管VT关断时,NP会向NS释放出能量。当在输出端加电感器L0和电容C0构成低通滤波器时,变压器的初级会有由Cr、Rr和VDr构成的RCD漏感尖峰吸收电路,输出回路有一个整流的二极管VD1。若变压器使用有气隙的磁心,则其铜损耗会较大,变压器温升会相对较高,并且输出的纹波电压比较大;但是电路结构简单,适用于200W以下电源,并且多路输出交调特性相对比较好。
电流电压检测:(1)电压检测是采用电阻分压的方法取得的,通过两只大交流电路进行分压,二极管的正负钳位电压送入跟随器的电压在-5~+5之间,经过跟随器隔离之后再通过比例运算放大器等比例放大,然后送入采样保持器。这样就可以得到被测的信号。(2)电流的检测,一般使用互感器,分流器等将电流信号处理并放大,作为后面电路保护和检测用。
均流方法:工作框图:所采用的是自动均流方法,这种均流方法采用一个窄带电流放大器,输出端口通过阻值为阻值为R连到均流的母线上,n个单元使用n个这种结构。
当输出达到均流时,电流放大器输出电流的I1这时I01处于均流的工作状态。相反地,电阻R产生一个电压,由这个电压控制A1,然后A1再控制单元功率级输出电流,最终使之达到均流。采用这种方法,可以使均流效果比较好,从而比较容易实现准确均流。在具体使用过程中,如果出现均流母线短路或者接在母线上的一个单元不处于工作状态时,母线电压会下降,将会使得每个单元输出电压会下调,甚至有可能达到下限,从而造成故障。并且当某一个模块的电流上升至最大输出电流,电流放大器输出电流也会达到极限值,同时使得其他的单元输出电压自动下降。可以构成多余系统,均流模块在数理论上可以不限。但是此方法的缺点是为使系统在动态调节过程中始终保持稳定状态,通常要限制最大调节的范围,要将所有电压调节到电压捕捉的范围以内。如果有一个模块均流线意外短路,则使得系统无法均流。单个的模块限流可能引起系统的不稳定。在大系统中,系统稳定性与负载均流瞬间响应的矛盾很难解决。如果图5中的电阻R支路上串一只二极管,则构成所谓的最大电流自动均流法。
过流保护方法:如图6所示,利用电流互感器T2来监视负载的电流IT,IT在通过互感器的初级时,会把电流的变化耦合到它的次级,从而在电阻R1上会产生压降。二极管D3会对脉冲电流进行整流,经过整流后再由电阻R2和电容C1进行平滑滤波。如果发生过载现象的时候,电容器C1两端的电压会迅速地增加,会使得齐纳管D4处于导通状态,从而驱动晶体管S1的导通,然后S1集电极的信号可以用来作为电源变换器调节电路的信号驱动。
电流互感器也可以用铁氧体磁芯或MPP环形磁芯来绕制,但是要经过反复的试验,从而来确保磁芯不饱和。理想的电流互感器应该达到匝数比是电流比一般地,互感器的Np=1,Ns=NpIpR1/(Vs+VD3)。具体绕制数据还要最后经过实验调整,使其性能达到最佳的状态。
在设计中碰到的一些问题,比如,单片机产生的PWM好像驱动不了MOS管,我们得外加驱动;又控制信号不用单片机,只用一个电容电阻,或555定时器,再用一个三极管和滑动变阻器,反馈也可以。
(1)测试使用的仪器:万用表,接触调压器,示波器。
(2)产生偏差的原因:a.对效率所进行的理论分析和理论计算时,采用的器件参数的典型值,但实际器件的参数有明显的离散性,电路性能可能因此而无法达到理论分析数值。b.电路的制作工艺并不是理想的,从而会增加电路中的损耗。
(3)改进方法:a.使用性能更好的器件,如换用导通电阻更小的电力MOS管,采用低阻电容;b.采用软开关技术,从而进一步减小电力MOS管的开关损耗;c.采用同步式开关电源的方案,用电力MOS管代替肖特基二极管以减小损耗;d.优化软件控制算法,进一步减小电压调整率和负载调整率。
[1]沈建华,杨艳琴.MSP430系列16位超低功耗单片机原理与实践[M].北京:北京航空航天大学出版社,2008.
[2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2005.
[3]阎石.数字电子技术基础[M].北京:高等教育出版社,1997.
[4]王水平等.开关稳压电源原理及设计[M].北京:人民邮电出版社,2008.