王丽苑,杜晓亮
(西北矿冶研究院资源与环境研究所,甘肃白银730900)
放射性污染物的危害主要是放射性核素通过自身的衰变放出的α、β和γ射线,这些射线能使人的机体内起着重要作用的各种分子变得不稳定,化学键断裂,分子被电离生成新的分子,引起遗传变异或诱发癌症,这种人体受过量的放射线照射所得的疾病称为“放射病”,最常见的放射病就是“白血病”,即“血癌”,并且对其他生物也会产生损伤和致病效应。有的放射性核素在水体、土壤中可转移到水生物、粮食、蔬菜等食物中,并发生明显的浓缩与富集,如水藻对90Sγ的浓缩倍数为10000倍,鱼为1000倍[1]。这些富集的核素可通过食物链进入人体。而由于这种污染物很难用物理、化学或生物作用去降低其辐射强度,只能靠自然衰变减少对环境的危害。
污染水体的放射性物质主要来源为天然放射性核素,如40K、238K、236Ra、14C 氘等[2];核武器核试验的沉淀物;核电站的废水、废气、废渣,包括泄露;放射性同位素的生产、运输和应用等[3]。
污染水体最危险的放射性物质为90Sγ、137Cs等,这些物质半衰期长,化学性能与组成人体的主要元素钙、钾相似,经水和食物进入人体后,能在一定部位积累、增加对人体的内照射[4]。
城市生活饮用水放射性污染为较敏感问题,故对其进行论证和预防十分必要。
2.1.1 源水放射性的调查
(1)调查范围。金川峡水库上游约50km的东大河、西大河,流域面积4000km。
(2)调查时间。丰水期及平水期。
(3)调查方法。采用分地段布设采样点。
(4)采样地段。皇城水库至金川峡水库;西大河水库出口至北海子水塘;大泉水库、老人头水库及可能流入金川峡水库的各股泉水。
(5)采样点的分配。金川峡水库为唯一水源,东大河、西大河水系最后汇集点直接影响饮用水质,在金川峡水库入口、水库内及金川公司净水站入口设采样点;东大河、西大河源头及汇入两河的各个小溪、各股泉水都设采样点;东大河较西大河水量大,在皇城水库内及流入皇城水库的直河、斜河,以及水库附近的几股泉水上设采样点;在可能流入金川峡水库的各股泉水上设采样点。
2.1.2 源水水样总α放射性的检测
(1)检测方法[5]。每个代表性水样取3个平行样,每桶水样10L。向水样中加入10mL浓HCl,调pH值至2~4之间。取水样2L加热、浓缩至50mL,转移到已称重的坩埚内,加入1mL浓硫酸慢慢加热蒸干,560℃灰化,冷却后称取160mg的残渣粉末,研细,均匀铺样(可用乙醇和丙酮混合物溶解)于直径为45mm的测量盘内,置于BH1227四路低本底αβ测量仪中测量,仪器经241Am和KCl标准校正。Α标准源探测效率74%。
(2)检测结果。具体测定结果详见表1。
由表1可以看出,从丰水期及平水期两次水样的检测结果分析,东大河水系总α放射性水平低,丰水期中19个点水样低于或稍高于国标的有12个,占70%;平水期中13个点水样11个低于国家标准,占85%,不超标的采样点基本分布于东大河主河道。流入皇城水库的直河、斜河及水库附近的几股泉水,流入东大河的两条小溪(9号、17号)总α放射性较高,为 1.0 ~1.1Bq/L。
西大河总α放射性明显高于东大河,除西大河水库出口和丰水期柴家庄总放射性符合标准外,其他5个采样点的总α放射性均在0.2~0.42Bq/L之间,最高测点是后塔寺红洋芋一线。
表1 金昌市生活饮用水源水总α放射性测定结果 Bq/L
金川峡水库总体上总α放射性超过l-2Bq/L,低于西大河而高于东大河,其卧兔泉是最高的测点。
整个水源系统总α放射性最强的是北海子水塘(为泉水,来自地下水)和老人头水库,它们流入金川峡水库,必然导致蓄水总α放射性的增加。
2.1.3 调查结论
通过对金昌市千平方公里范围内α放射性的调查表明:金昌市水源中的α放射性主要是由天然放射系-铀系、钍系和锕系的放射性核素引起的,人工放射性核素没有检出。主要的放射性核素是U238、U234、U235,其 次 是 钍 系 的 Th232、Th238、Thc(212B1)和 Thc(210Po)的以及锕系的Ra226,可能是由于上游泉水较多,溶解了地壳中的放射性元素所致。
由于各源水点水平不一,差别较大,超标源点较多,约占50%,且地理位置分散,有时一股地下水有几个乃至十几个泉眼,多集中在西大河水库出口经后塔寺至北海子一线,它们汇入金川峡水库,是使水库总α放射性超标的主要原因。因此,不能采用截流和堵源的办法来治理总α放射性,只能在金昌市供水工程范围内采取有效的治理措施。
降低饮用水中总α放射性方案探讨。根据金昌市水源总α放射性调查结果以及对源水水样总γ谱的分析表明:总α放射性主要是由天然放射系铀、钍和锕系及其子体引起的,因此,只要通过降低饮用水中的铀、钍、锕的浓度,就能使总α放射性降低。根据此指导方向,选定了采用混凝沉淀法、吸附法等处理方法进行实验研究,整个实验的过程以铀、钍、锕含量的分析数据做为改变和确定实验条件的依据,最后测定总α比活度作为最终的处理研究结果。
在混凝沉淀法及吸附法等处理方法的试验中,通过对不同条件下,投加不同剂量的各种净水剂的试验得出:选用5#净水剂的混凝沉淀法试验效果较好,该方法使饮用水中铀、钍及总α放射性的去除率分别达到90%、60%、80%,同时还能改善水的色度和浊度。产渣量为85g/t水,因此确定此方法为降低α放射性的处理方法。
推荐方法的工艺流程为:原水→初沉→混凝→二沉→过滤→用户,5号净水剂的投加量为75~125g/t水,浓度5%;助凝剂的投加量为2g/t水,浓度为0.2% 。
关于降低饮用水总α放射性的处理工艺流程,考虑到金昌市水源水含有机物及菌、藻类较多,以及参考有关放射性废水的处理方法,确定金昌市供水工程净水厂所采用的水处理工艺是较先进的处理设施,可以提高处理效果,具体表现在以下几个方面。
(1)预沉池一改以往使用平流沉淀池的传统而改为旋流絮凝沉淀池。
(2)二沉池选用斜管沉淀池,并在沉淀池前部设置多级微涡体机械网浆反应池,用以提高反应和沉淀效果,对去除有机物中溶解于水中的胶体分子和放射性核素有重大意义。
(3)将普通滤池改为V型滤池,可使过滤介质在沉层截污,达到滤速高、运行效果好的目的。
(4)在预沉池配水井处投加液氯做预氧化处理,以利去除水中有机物、菌和藻类等。
其工艺流程见图1。
图1 水源水处理工艺图
根据所确定的工艺流程和水处理构筑物经预沉、二次沉淀、过滤的层层处理,不仅使水源水在高浊度水期间也能保证良好的去除率,二沉池亦有良好的反应条件和较高的沉淀效果,对有机物污染、放射性核素有较好的去除效果。
由于金昌市供水工程水源水净化工艺流程是根据试验结果推荐的工艺流程而确定的,有一定的理论试验根据,而通过对小型及扩大试验的试验数据分析看出:5#净水剂混凝沉淀法适用于饮用水总α放射性的治理,能有效去除饮用水中铀、钍等微量元素,使饮用水中铀、钍及总放射性的去除率分别达到90%、60%、80%。放射性可降到0.1Bq/L以下,符合生活饮用水卫生标准,而且废渣量较低,产渣量为85g/t水,泥渣的总α放射性水平为2.4×103Bq/kg左右,低于固体放射性废物1.85×104Bq/kg的国家标准,亦不属于放射性废物,不必进行特别处理,也不会造成二次污染。
因此,从试验基础和理论上分析,金昌市供水工程净水厂所采用的对水源水放射性污染的化学沉淀工艺是基本可行的。
另外,由于生活饮用水微量放射性元素治理不同于放射性废水,其特点是水量大、放射性水平低、水质要求较为严格。虽然目前国内外对治理放射性废水的研究较多,但对直接论述生活饮用水放射性治理的题材很少,还没有对从饮用水中去除铀、钍,降低总α放射性的确切方法,还需在实践中逐步探索、研究,寻找最佳、确切的治理措施。
综上所述,金昌市供水工程净水厂净化工艺应在实践中加以验证,在水厂正常运转后,针对放射性物质而合理布设水样监测点,以测定全工艺过程中的放射性物质,寻找其变化规律,不断地探索、研究,以求更高的、有效的去除效果。
金昌市生活饮用水源总α放射性,由于各源水点水平不一,差别较大,超标点约50%左右,地理位置分散,多集中在西大河水库出口经后塔寺至北海子一线。金川峡水库总放射性在0.2Bq/L左右,饮用水在0.3Bq/L左右。各源水点的检测值多在0.3Bq/L以上,最高达0.9Bq/L,对总α放射性的治理不能采用截流和堵源的办法。源水水样总γ能谱分析出金昌市生活饮用水源水总α放射性来自天然放射系——铀系、钍系和锕系的一系列放射性核素。因此,确定了治理总α放射性的指导方向就是降低饮用水中的铀、钍浓度。经类比且通过在不同条件下,分别投加不同净水剂的试验表明:采用混凝沉淀法、投加5号净水剂可使金昌市源水的铀、钍及总α放射性的去除率达到90%、60%、80%以上,处理后的总α放射性降至0.04Bq/L,符合国家生活饮用水卫生标准,且产渣量低,处理1t水产渣量85g左右,每年产渣量为3102.5t/年(以10万m3/d规模计),泥渣的总 α 放射性水为2.5×104Bq/kg的低于固体放射性废物1.85×104Bq/kg的国家标准,不属于放射性废物。因此推荐的工艺流程为原水+初沉+混凝+二沉+过滤+用户。
4.2.1 存在问题
由于试验数据和理论分析与实际操作必然有一定的差距,由试验效果推荐的治理总α放射性的工艺,应在实际运行中加以验证。
4.2.2 建议
(1)为了充分验证金昌市供水工程净水厂工艺对总α放射性去除的效果,建议水厂应配置放射线监测仪表和设备,并在全工艺过程布设监测点,从动态和静态来跟踪放射线,以求掌握其变化规律,从实践中探索、研究生活饮用水微量放射性物质去除效果,以求得一种确切的治理措施,填补国内外在这方面的空白,使金昌市人民用上放心水,确保金昌市城市居民的身心健康。
(2)对于水厂处理过程产生的泥渣,不属放射性固体废物,不必进行特殊处理,如能脱水后在废矿井中深埋、封存则更为安全可靠。
[1]Ivanov L M,Margolina T M,Danilov A I.Application of inverse technique to study radioactive pollution and mixing processes in the Arctic Seas[J].Journal of Marine Systems,2004,48:117 ~ 131.
[2]张天祝.应对核与辐射突发事件的研究[J].核安全,2009(3):6~11.
[3]Cerne M,Smodi B,trok Mo.Uptake of radionu - clides by a common reed(Phragmites australis(Cav.)Trin.ex Steud.)grown in the vicinity ofthe former uranium mine at Zirovski vrh.Nuclear Engineering and Design,2011,241(4):1282~1286.
[4]Lee Minhee,Yang Minjune.Rhizofiltration usingsunflower(Helianthus annuus L.)and bean(Phaseolus vulgaris L.var.vulgaris)to remediateuranium contaminated groundwater[J].Journal of Hazardous Materials,2010,173:589 ~596.
[5]Aumento F,Donne K Le,Eroe K.Transuranium radionuclide pollution in the waters of the La Maddalena National Marine Park[J].Journal of Environmental Radioactivity,2005,82:81 ~93.