沈 洁,冯玲玲,陶雁敏
(辽宁师范大学 数学学院,大连 辽宁 116029)
五阶时滞差分方程解的渐近性
沈 洁,冯玲玲,陶雁敏
(辽宁师范大学 数学学院,大连 辽宁 116029)
考虑五阶时滞差分方程 Δ5yn+f(n,yn,yn-r,yn-l,yn-p)=0,n∈N(n0),得出了该方程存在具有特殊渐近性的有界非振动解的充分必要条件.
差分方程;时滞;有界解;渐近性
下面假设对给定n0和式(2),时滞差分方程(1)有唯一解{yn},方程(1)的解{yn}称为振动解是指序列{yn}不永远为正也不永远为负;否则,称其为非振动解.
定义1设S是Banach空间B的一个子集,S中每一个序列都有一个子列收敛到B中元素,则称S是相对紧的.
定义2设S是l∞的子集,∀ε>0,∀{yn}∈S,存在整数N≥n0,当i,j>N时,有| yi-yj|<ε,则称S是一致柯西的.
引理1设Ω是乘积空间l∞×l∞的有界子集,若Ω是一致柯西的,则Ω是相对紧的.
引理2(Schauder不动点定理)设Ω是Banach空间X的一个非空闭凸子集,设T∶Ω→Ω是一连续映射,且TΩ是X中一个相对紧子集,则T中至少有一个不动点.
定理1假设存在常数c≠0,使
[1]Erbe L H,Kong Q,Zhang B G.Oscillation Theory for Functional Differential Equations[M].Dekker,1995.
[2]Gyori I,Ladas G.Oscillation Theory of Delay Differential Equation with Applications[M].Oxford Clarendon Press,1991.
[3]Agarwal R P.Difference Equations and Inequalities[M].New York,Marcel Dekker,1992.
[4]Philos Ch G.Oscillations in a class of difference equations[J].Appl Math Comp,1992(48):45-57.
[5]Philos Ch G.Oscillations in linear difference equations with variable coefficients[J].J Appl Math Stoch Anal,1991(4):241-258.
[6]Cheng S S,Patula W T.An existence theorem for a non⁃linear difference equation[J].Nonlinear Anal,1992(20):193-203.
[7]Yan J,Liu B.Asymptotic Behavior of a Nonlinear Delay Difference Equation[M].1995.
Asymptotic Behavior of Solutions for 5-th Order Delay Difference Equations
SHEN Jie,FENG Lingling,TAO Yanmin
(School of Mathematics,Liaoning Normal University,Dalian116029,China)
This paper studied a class of 5-th order delay difference equations Δ5yn+f(n,yn,yn-r,yn-l,yn-p)=0,
n∈N(n0)to give the necessary and sufficient condition for the existence of a bounded nonoscillatory solution of this equation.
difference equations;delay;bounded solution;asymptotic behavior
O 175.7
A
1674-4942(2011)03-0242-05
2011-05-07
2010年辽宁省教育厅科研项目(L2010235);国家自然科学基金资助项目(11171138)
毕和平