程广荣
(丰镇市发电厂,内蒙古 丰镇 012100)
早期的故障诊断主要是依靠人工,利用触、摸、听、看等手段对设备进行诊断。通过经验的积累,人们可对一些设备故障做出判断,但这种手段由于其局限性和不完备性,现在已不能适应生产对设备可靠性的要求。而信息技术和计算机技术的迅速发展以及各种先进数学算法的出现,为汽轮机故障诊断技术的发展提供了有利的条件。人工智能、计算机网络技术和传感技术等已成为汽轮机故障诊断系统不可或缺的一部分。
美国是最早从事汽轮机故障诊断研究的国家之一,在汽轮机故障诊断研究的许多方面都处于世界领先水平。目前美国从事汽轮机故障诊断技术开发与研究的机构主要有 EPRI及部分电力公司,西屋、Bently、IRD、CSI等公司。
美国Bechtel电力公司于1987年开发的火电站设备诊断用专家系统(SCOPE)在进行分析时不只是根据控制参数的当前值,而且还考虑到它们随时间的变化,当它们偏离标准值时还能对信号进行调节,给出消除故障的建议说明,提出可能临近损坏时间的推测。
美国Radial公司于1987年开发的汽轮发电机组振动诊断用专家系统(Turbomac),在建立逻辑规则的基础上,设有表征振动过程各种成分与其可能故障源之间关系的概率数据,其搜集知识的子系统具有人一机对话形式。该系统含有9 000条知识规则,有很大的库容。
我国在故障诊断技术方面的研究起步较晚,但发展很快。一般说来,经历了两个阶段:第一阶段是从20世纪70年代末到80年代初,在这个阶段内主要是吸收国外先进技术,并对一些故障机理和诊断方法展开研究;第二阶段是从20世纪80年代初期到现在,在这一阶段,全方位开展了机械设备的故障诊断研究,引入人工智能等先进技术,大大推动了诊断系统的研制和实施,取得了丰硕的研究成果。1983年春,中国机械工程学会设备维修分会在南京召开了首次“设备故障诊断和状态监测研讨会”,标志着我国诊断技术的研究进入了一个新的发展阶段,随后又成立了一些行业协会和学术团体,其中和汽轮机故障诊断有关的主要有中国设备管理协会设备诊断技术委员会、中国机械工程学会设备维修分会、中国振动工程学会故障诊断学会及其旋转机械专业学组等。这期间,国际国内学术交流频繁,对于基础理论和故障机理的研究十分活跃,并研制出了我国自己的在线监测与故障诊断装置,“八五”期间又进行了大容量火电机组监测诊断系统的研究,各种先进技术得到应用,研究步伐加快,缩小了与世界先进水平的差距,同时也形成了具有我国特点的故障诊断理论。
由于汽轮机工作环境恶劣,所以在汽轮机故障诊断系统中,对传感器性能要求更高。目前对传感器的研究,主要是提高传感器性能和可靠性、开发新型传感器,另外也有相当一部分力量在研究如何诊断传感器故障以减少误诊率和漏诊率,并且利用信息融合进行诊断。
现行的对传感器自身故障检测技术主要有硬件冗余、解析冗余和混合冗余,由于硬件冗余有其明显的缺点,因而在实际中应用较少。上海交通大学的林日升等对传感器故障检测和伪参数识别技术开展了研究工作。
2.2.1 故障机理
故障机理是故障的内在本质和产生原因。故障机理的研究,是故障诊断中的一个非常基础而又必不可少的工作。目前对汽轮机故障机理的研究主要从故障规律、故障征兆和故障模型等方面进行。
由于大部分轴系故障都在振动信号上反映出来,因此,对轴系故障的研究总是以振动信号的分析为主。上海交通大学左人和从动力学的角度研究了典型故障的响应特征。
调节系统的可靠与否,对汽轮机组的安全运行具有非常重要的意义。哈尔滨工业大学的于达仁、徐基豫等在调节系统故障诊断方面做了很多研究工作,他们给出了调节系统卡涩和非卡涩原因造成故障的数学模型,并对诊断方法和诊断仪器的实现进行了探讨。
基于小波分析方法和神经网络建立的智能分析技术,是下一代故障检测与判定(FDI)的重要内核。国内外在这方面进行了很多的研究,目前应用最多的是前向神经网络、BP神经网络以及把神经网络与模糊诊断相结合的模糊神经网络等。
2.2.2 国内在故障诊断系统设计和系统实现方面的研究
完整的汽轮机故障诊断系统,应包括数据采集、信号处理与分析、诊断和决策几个部分,它是故障诊断技术的集中体现,我国早在20世纪80年代就开始了这方面的研究,到目前已研制开发出了几十种系统。华北电力学院以模拟转子试验台作为信号源对汽轮发电机组振动监测与故障诊断系统进行了研究。