马洪亭,王明辉,王芳超,郝夙枫,杨国利,张于峰,邓 娜
(天津大学环境科学与工程学院,天津 300072)
典型废旧家电印刷线路板热失重特性和热解动力学模型
马洪亭,王明辉,王芳超,郝夙枫,杨国利,张于峰,邓 娜
(天津大学环境科学与工程学院,天津 300072)
用热重法研究了废旧电视机、电脑、手机和洗衣机4种典型家电印刷线路板的热解特性,发现在相同条件下不同印刷线路板的热解起始温度、终止温度、最大失重速率、峰温和反应时间随升温速率的变化规律一致,但总失重率存在着较大差异. 建立了不定温条件下非均相反应的热解动力学模型,用Kissinger法和形状因子法求解了4种典型家用电器印刷线路板的表观动力学参数E、A和n. 彩电:E=103.09,kJ/mol,A=8.17×108,/min,n=1.73;洗衣机:E=98.15,kJ/mol,A=1.50×108,/min,n=2.73;手机:E=78.79,kJ/mol,A=2.48×106/min,n=3.56;电脑:E=101.31,kJ/mol,A=2.96×108,/min,n=1.77. 由动力学模型计算出的转化率与实验值之间能够较好地吻合.
典型废旧家电;热失重特性;印刷线路板;动力学模型
随着电视机、洗衣机、电脑、手机等家用电器的普及和更新速度的加快,产生的废旧家电越来越多.由于其中的印刷线路板(printed circuit boards, PCBs)含有大量可回收利用的铜、锡、铅、金、玻璃纤维等金属和非金属,其处理技术和处理方法的研究越来越受重视[1-3].火法冶金、湿法冶金和机械物理法[4-7]等处理方法,虽然技术比较成熟,但在处理过程中会产生严重的二次污染,而且金属回收率低、非金属材料无法回收,所以应用受到限制.热解法由于具有处理工艺简单、处理过程比较环保、金属和非金属回收率高等优势,近年来已成为废旧印刷线路板回收技术研究的热点[8-11].文献[12-15]研究了未经使用的印刷线路板基材的热失重特性与动力学规律.笔者以彩电、电脑、手机和洗衣机4种典型废旧家电印刷线路板为研究对象,用差热-热重联用分析仪进行了热失重实验,研究了热解特性,并在此基础上建立了热解动力学模型,用Kissinger法和形状因子法求解了4种典型家用电器印刷线路板的表观动力学参数E、A和n.
1.1 实验样品
实验用印刷线路板是从市场上收购的废旧彩电、电脑、手机和洗衣机经拆解获得.热失重实验时,为消除物料内外温差和传热传质的影响,实验前将各种线路板分割成3,mm×3,mm大小左右的小颗粒,每次实验的样品质量在25~33,mg之间不等.
1.2 实验仪器和实验方法
热失重实验是在日本岛津公司生产的DTG-60H型差热-热重联用分析仪中完成的,仪器的测温范围是室温至1 500,℃,温度分辨力为0.1,℃.电子天平的灵敏度为±0.001,mg,量程为±500,mg,测量精度为±1%.用于盛放实验样品和参比物的坩埚由耐高温的Al2O3材料制成,参比物为高纯度的Al2O3白色粉末.为保证热解过程中炉内的绝氧条件,实验过程中一直向设备中通入压力为0.3,MPa的高纯度的N2,N2流量为30,L/min.升温速率分别控制在10,℃/min、20,℃/min、30,℃/min和40,℃/min,热解终温统一设定为800,℃.实验基本参数、热失重曲线和差热曲线被自动记录和保存在电脑中.
为研究废旧彩电、洗衣机、电脑和手机4种典型家电印刷线路板的热解特性,在升温速率β分别为10,℃/min、20,℃/min、30,℃/min和40 ℃/min的条件下进行热失重实验,并对获得的TG曲线和DTG 曲线进行分析,得到表征4种典型家电印刷线路板热解特性的起始温度t0、终止温度tf、最大失重速率峰温tp和反应时间τ 等参数,见表1.
从表中数据可以看出,彩电和手机印刷线路板的热解过程为2步反应,有2个峰温.电脑和洗衣机的热解过程为单步反应,有1个峰温;由于不同家电线路板的组成成分不同,热解后总的热失重率有比较大的差异;在扣除线路板中不参与热解的金属成分后,废旧彩电印刷线路板的热失重率最大,为67.77%,废旧手机印刷线路板的热失重率最小,为26.82%.
表1 不同印刷线路板热解特性参数Tab.1 Thermogravimetric characteristics parameters of different PCBs
废旧印刷线路板的热解过程比较复杂,一般包括解聚反应(拉链降解)、无规断裂和低分子物质的脱除等,甚至还伴随着裂解后分子的重整.根据文献[16],该过程可看成是不定温、非均相反应,其动力学方程可表示为
式中:α为转化份额,%;T为热力学温度,K;k( T)为反应速率常数,是温度的函数.根据Arrhenius方程,k( T)=Aexp(−E/ RT);f(α)为反应机理函数,对于固体热分解反应,一般认为反应速率与反应物浓度成正比,即f(α)=(1−α)n.因此,可得热解反应动力学微分方程为
式中:E为反应活化能,kJ/mol;A为指前因子,min-1;R为摩尔气体常数,8.314,J/(mol·K);n为反应级数.
热解动力学研究的目的在于求解描述热解反应的上述方程中的“动力学三因子”(kinetic triplet)E、A和n.
对方程(3)两边取对数,可得Kissinger方程
通过对图1~图4中的4条直线进行最小二乘法回归,可以得到相应的直线方程,根据直线的截距(intercept)和斜率(slope)可以求出相应的活化能E、指前因子A和相关系数r,见表2.
彩电、手机、电脑和洗衣机4种典型废旧家电印刷线路板的表观动力学参数E、A、n及相关系数r,汇总于表2中.
图1 废旧彩电印刷线路板lnFig.1for waste color TV PCBs
图2 废旧手机印刷线路板lnFig.2for waste mobile phones PCBs
图3 废旧洗衣机线路板lnFig.3for waste washing mathions PCBs
图4 废旧电脑线路板lnFig.4for waste computures PCBs
表2 不同废旧家电印刷线路板热解反应动力学参数值汇总Tab.2 Thermogravimetric reaction kinetic parameters data summary on PCBs from different waste life electro-equipments
计算结果表明,不同家电的印刷线路板,由于组成成分和生产工艺不同,其热解过程的表观动力学参数不同;同一种线路板的不同失重阶段,由于热解成分不同,热解的难易程度不同,导致其表观动力学参数也不相同.一般第2步热解要比第1步热解更为困难,需要消耗更多的能量,因此,彩电和手机第2步热解的活化能大于第1步热解的活化能.
对方程(4)进行整理,两侧在0~α和0T~T之间积分,得
从图中可以看出,彩电和电脑印刷线路板的热解动力学模型计算值与实验值之间吻合得比较好,说明本文所选的热解机理函数与热解动力学规律一致,是最概然函数.由热重实验数据和形状因子法计算出的表观动力学参数反映了热解过程的真实情况.
图5 彩电线路板热解动力学模型与实验值对比Fig.5 Comparison between experimental data and kinetic model prediction from color TV PCBs
图6 电脑线路板热解动力学模型与实验值对比Fig.6 Comparison between experimental data and kinetic model prediction from computures PCBs
(1)彩电、洗衣机、手机和电脑4种典型废旧家电印刷线路板的热解起始温度、终止温度、最大失重速率、反应时间、峰温随升温速率的变化规律相似,但总失重率之间存在着较大的差异.
(2)用Kissinger和形状因子法求出了动力学三因子,分别为,彩电:E=103.09,kJ/mol,A=8.17× 108,/min,n=1.73;洗衣机:E=98.15,kJ/mol,A=1.50×108,/min,n=2.73;手机:E=78.79,kJ/mol,A=2.48×106/min,n=3.56;电脑:E=101.31,kJ/mol,A=2.96×108,/min,n=1.77.而且由动力学模型计算出的转化率与实验值之间吻合较好.
[1] 李红军,孙水裕,邓 丰,等. 热解处理废旧线路板方法的研究进展[J]. 中国资源综合利用,2009,27(4):15-18.
Li Hongjun,Sun Shuiyu,Deng Feng,et al. Discussion on dealing with printed circuit boards scrap by pyrolysis method[J]. China Resources Comprehensive Utilization,2009,27(4):15-18(in Chinese).
[2] 甘 舸,陈烈强,彭绍洪,等. 废旧电子电气设备回收处理的研究进展[J]. 四川环境,2005,24(3):89-93.
Gan Ge,Chen Lieqiang,Peng Shaohong,et al. Progress in recycling treatment of waste electronic/electrical euipment[J]. Sichuan Environment,2005,24(3):89-93(in Chinese).
[3] Huang Kui,Guo Jie,Xu Zhenming. Recycling of waste printed circuit board:A review of current technologies and treatment status in China [J]. Journal of Hazardous Materials,2009,164(2/3):399-408.
[4] Reddy R G,Mishra R K. Recovery of precious metals by pyrometallurgical processing electronic scrap[C]// Proceedings of the Eleventh International Precious Metals Institute Conference. USA:Int Precious Metals Inst,1987:135-146.
[5] Oishi T,Koyama K,Alam S,et al. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions[J]. Hydrometallurgy,2007,89(1/2):82-88.
[6] 路洪洲,李 佳,郭 杰,等. 基于可资源化的废旧印刷线路板的破碎及破碎性能[J]. 上海交通大学学报,2007,41(4):551-556.
Lu Hongzhou,Li Jia,Guo Jie,et al. Pulverization characteristics and pulverizing of waste printed circuit boards(printed wiring boards)based on resource utilization[J]. Journal of Shanghai Jiao Tong University,2007,41(4):551-556(in Chinese).
[7] Lu Hongzhou,Li Jia,Guo Jie,et al. Movement behavior in electrostatic separation:Recycling of metal materials from waste printed circuit board[J]. Journal of Materials Processing Technology,2008,97(1/2/3):101-108.
[8] Hall W J,Williams P T. Separation and recovery of materials from scrap printed circuit boards[J]. Resources,Conservation and Recycling,2007,51(3):691-709.
[9] Hall W J,Williams P T. Processing waste printed circuit boards for material recovery[J]. Circuit World,2007,33(4):43-50.
[10] 毛艳艳,马增益,余 量,等. 废弃印刷线路板热解过程中溴的转化[J]. 浙江大学学报:工学版,2009, 43(5):937-941.
Mao Yanyan,Ma Zengyi,Yu Liang,et al. Conversion of bromine during the pyrolysis of waste printed cricuit boards[J]. Journal of Zhejiang University:Engineering Science,2009,43(5):937-941(in Chinese).
[11] Chiang Hung-Lung,Lin Kuo-Hsiung,Lai Mei-Hsiu,et al. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures[J]. Journal of Hazardous Materials,2007,149(1):151-159.
[12] Quan Cui,Li Aimin,Gao Ningbo. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes[J]. Waste Management,2009,29(8):2353-2360.
[13] 熊祖鸿,李海滨,吴创之,等. 印刷线路板废旧物的热解与动力学实验研究[J]. 环境污染治理技术与设备,2006,10(7):47-50.
Xiong Zuhong,Li Haibin,Wu Chuangzhi,et al. A study on pyrolysis and kinetics of printed circuit boards wastes[J]. Techniques and Equipment for Environmental Pollution Control,2006,10(7):47-50(in Chinese).
[14] 张于峰,郝 斌,郭晓娟,等. 废旧印刷线路板热重分析和动力学模型[J]. 燃烧科学与技术,2008,14(6):506-510.
Zhang Yufeng,Hao Bin,Guo Xiaojuan,et al. Thermogravimetric analysis and kinetic models on pyrolysis of waste printed circuit boards[J]. Journal of Combustion Science and Technology,2008,14(6):506-510(in Chinese).
[15] Friedman H L. Kinetics of themal degradation of charforming plastics from thermogravimetry application to a phenolic plastic[J]. Journal of Polymer Science,1964,6(1):183-195.
[16] 胡荣祖,史启桢. 热分析动力学[M]. 北京:科学技术出版社,2001.
Hu Rongzu,Shi Qizhen. Thermal Analysis Kinetics[M]. Beijing:Science and Technology Press,2001(in Chinese).
[17] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
Thermogravimetric Characteristics and Kinetic Modes of Printed Circuit Boards from Typical Waste Life Electro-Equipments
MA Hong-ting,WANG Ming-hui,WANG Fang-chao,HAO Su-feng,YANG Guo-li,ZHANG Yu-feng,DENG Na
(School of Environmental Science and Technology,Tianjin University,Tianjin 300072,China)
The thermogravimetric characteristics of printed circuit boards(PCBs)from waste color televisions,computers,mobile phones,and washing machines were studied using thermogravimetry in strict pyrolyisis conditions. The results indicated that the variations of initial temperature,finial temperature,maximum weight loss ratios,peak temperature,and reaction time with heating rate are similar for different printed circuit boards. However,the total weight loss ratios have an obvious difference for different printed circuit boards in the same conditions. Based on the assumptions of non-isothermal and heterogeneous reactions,a kinetic mode was established,and the apparent kinetic parameters for different printed circuit boards were obtained with Kissinger method and shape index method. The activation energy E,the pre-exponential factor A,and the reaction order n were:103.09,kJ/mol,8.17×108/min,and 1.73 for color television PCB,98.15,kJ/mol,1.50×108,/min,and 2.73 for washing machine PCB,78.79,kJ/mol,2.48×106,/min,and 3.56 for mobile phone PCB,101.31,k/mol,2.96×108,/min,and 1.77 for computer PCB,respectively. The conversion calculated agreed quite well with the experimental data.
typical waste life electro-equipment;thermogravimetric characteristics;printed circuit board;kinetic mode
O621.259
A
0493-2137(2011)07-0602-05
2010-04-12;
2010-10-12.
天津市自然科学基金资助项目(09JCYBJC08100);天津市滨海新区“十大战役”重大科技支撑项目(2010-Bk140002);天津市科技创新专项资金资助项目(07FDIDH0400).
马洪亭(1964— ),男,博士,副教授.
马洪亭,mht116@tju.edu.cn.