基于延时复用技术的短时间间隔测量方法

2010-06-07 11:11杜保强
关键词:分辨力重合延时

杜保强,周 渭

基于延时复用技术的短时间间隔测量方法

杜保强1,2,周 渭1

(1. 西安电子科技大学测量与仪器系,西安 710071;2. 河南职业技术学院信息工程系,郑州 450046)

提出了一种基于延时复用技术的新的短时间间隔测量方法.根据基于时-空关系的时间间隔测量原理,将若干延时单元组成延迟链. 延迟链的输出被反馈到系统输入端并与输入信号进行单稳态触发逻辑判断,判断结果被重新送回到重合检测电路中去,实现一个延迟链可以多次重复使用的循环检测,扩展了基于时-空关系的时间间隔测量范围,提高了测量系统的稳定性.实验和分析结果表明了该方法的科学性和先进性,其测量分辨率可达到100皮秒至10皮秒量级.结合现场可编程门阵列(FPGA)片上技术,新方案设计的测量系统具有结构简单、成本低廉的优点.

时-空关系;短时间间隔;延时复用;循环检测;误差分析

随着航空航天、激光测距、精密定位、粒子飞行探测及其他高科技领域的技术发展,对时间间隔尤其是短时间间隔的测量精度提出了更高要求.高精度的时间间隔测量方法有基于模拟时间扩展的计数法、基于模/数(analog-to-digital,AD)变换器的模拟时间-幅度转换法、基于冲激振荡器的时间游标法、抽头延迟线法和差分延迟线法等[1].时间扩展计数法采用模拟内插技术,使所测时间间隔相对大小缩小1,000倍,计数器分辨力提高了3个量级,但存在±1个计数误差,转换时间长,非线性度大,不常使用.时间-幅度转换法利用现代高速ADC,结合离散器件可达到1~20,ps的分辨力,若采用专用集成电路(application specific integrated circuit,ASIC)替代离散器件且与发射极耦合逻辑(emitter coupled logic,ECL)电路配合使用,可使精度达到10 ps,但这种方法模拟部分难以集成,非线性难以消除;SR620就是用该法实现了最高达20,ps的测量分辨力.时间游标法是一种以时间测量为基础的计数方法,类似于机械游标卡尺的原理,其测量关键在于能较为准确地测出整周期数外的零头或尾数,以提高时间的分辨力和准确度,避免了±1个计数误差,但这种方法需要高稳定度的可启动振荡器和高精度的重合检测电路,制作调试技术难度大、造价高,且受抖动的影响,转换时间长,制作工艺复杂.抽头延迟线法是由一组延迟单元组成,理论上这组延迟单元传播时延相等,而时间间隔的测量是通过关门信号对开门信号在延迟线中的传播进行采样实现的;这种方法分辨力较高,且实现线路简单,易于集成在数字电路上,可与锁相环(phase locked loop,PLL)或延时锁相环(delay locked loop,DLL)配合实现高精度测量.商用HP5371A就采用该结构,其分辨力达到200,ps,此结构若在现场可编程门阵列(field-programmable gate array,FPGA)中实现,其分辨力为100,ps.差分延迟线法是在抽头延迟线法的基础上发展而来的,采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS) FPGA的差分延迟线法可以实现200,ps的分辨力和43,s的量程,有的还可以达到100,ps的分辨力,若采用0.7,μm CMOS工艺的ASIC,可以实现30,ps的分辨力[2-3].这种测量方法分辨力最高,易于集成在数字电路上,但结构比抽头延迟线法复杂.近年发展起来的基于时空关系的时间间隔测量方法也能达到10皮秒级至皮秒级的超高测量分辨力,但测量范围很窄[4].

针对以上几种测量方法的优缺点,笔者提出了一种基于延时复用技术的新的短时间间隔测量方法.新方法不仅巧妙地解决了传统时间间隔测量中存在的±1个计数误差问题及高分辨力与窄测量范围之间的矛盾,而且简化了电路结构,降低了成本.

1 系统测量原理

电磁波信号在导线中的传输速度具有高度的准确性和稳定性,这是自然界中物质存在的固有方式.大量实验表明,信号在传输导线中的传输速度约为2×108,m/s,那么纳秒和皮秒在导线中的传输延迟分别为20,cm和0.2,mm,这是比较容易处理的长度段[5].根据这一自然现象,对时间量的测量就可以转化为对长度量的测量,其原理如图1所示.将开门信号和关门信号整形为窄脉冲后,分别送入双路延迟线.开门一路延时单元DL1在长度上略大于关门一路的延时单元DL2,它们之间微差的大小取决于要达到的测量分辨力.延迟线末端匹配电阻是为了防止信号在延迟线中反射传播.根据时空对应关系,两路延时单元在长度上的微差就体现了在传输延迟时间上的相位差,这样被延时的开门信号将与关门信号发生重合.此时在每个延时单元处设置相位重合检测电路,将重合信息送入译码器,通过译码器就可以得到被测短时间间隔[6-7].这种测量原理的关键在于能准确测出少于一个延时单元的时间,当延时单元的长度差设置在毫米级或亚毫米级时,能够达到10皮秒级至皮秒级的测量分辨力.

图1 系统测量原理Fig.1 System measurement principle

由图1可知,如果双路延时单元的相位差为PD,被测时间间隔为tx,那么开门信号经过n个PD的延迟后将与关门信号发生重合;通过对重合信号检测点的取样,则可知道此时开门信号经过了几级延时单元.根据发生重合时所经过的延迟级数就可以计算出被测时间间隔tx= nPD.这里,相位差PD是根据信号传输速度、被测时间间隔的范围及测量要达到的分辨力来确定的.其工作波形如图2所示.

基于时-空关系的时间间隔测量方法,由于它的延时单元是无源的,所以噪声小,功耗低[8-9].但这也同时带来了一个缺点,就是驱动器的负载重,并且每个延时单元后面需要加一个重合检测电路,这意味着分辨力越高,负载越重[10].为了解决这一问题,系统采用了插入缓冲器的方法在小范围内扩大量程范围.每隔一定数量的延时单元,在开门一路和关门一路分别插入相同的缓冲器,对衰减的信号进行限幅放大,使其能够驱动后级的延时单元.

图2 基于时-空关系的时间间隔测量波形Fig.2 Time interval measurement waveform based on time-space relationship

图3 系统设计新方案Fig.3 New scheme of system design

2 系统设计方案

2.1新方案设计

由图1可知,基于时-空关系的时间间隔测量系统虽然具有极高的测量分辨力,但测量范围却很窄.若想进一步扩展测量范围,则必须增加延迟单元的个数并插入大量的检测器和缓冲器.随着延迟单元个数的增加,传输线中存在的各种损耗也随之增加,信号在传输线中衰减;而且大量重合检测电路的引入,使得电路的负载很重,且分辨力越高,需要的重合检测电路就越多,最后导致电路无法正常工作.为了使电路能继续正常工作,系统在双延时电路中插入了相同的缓冲器,使信号在缓冲器的作用下得到放大,增强了驱动能力,扩大了测量范围.但缓冲器的引入不是无限制的.因为缓冲器的引入会给电路带来很大的噪声,增大了开门信号和关门信号的边沿抖动性,最终导致系统的重合检测性能极不稳定.因此,基于时-空关系的时间间隔测量系统仅适用于小范围的测量.针对分辨力和测量范围之间的矛盾,系统采用了一种基于延时复用技术的新的测量方案.新方案主要由延迟链模块、单稳触发及计数模块、重合检测模块、锁存译码模块(针对重合检测)、计数锁存模块、附加延时修正模块及数据处理模块组成,如图3所示.

根据图3所示方案,将若干延时单元组成延迟链,将延迟链的输出信号反馈到系统输入端,与原始输入信号一起经过一个单稳态触发逻辑判断;判断结果被重新送回到重合检测电路中去,实现一个延迟链可以多次复用的循环检测,从而将它的测量范围扩展到原来的N倍.其中每循环1次,就会产生1个计数脉冲,单稳态触发逻辑内部计数器的输出就会自动加1.这样若计数器输出为N,则被测短时间间隔的大小为

式中: N为计数器输出可达到的最大值;T为差分延时链的测量范围;m为延时链最后一次循环中重合检测电路检测到的重合单元个数;τ为开始信号经过的每个延时单元的延时时间,即系统的测量分辨力.

2.2整形和控制电路

整形电路采用施密特触发器,将输入信号整形为脉冲信号,要求脉冲的上升沿达到1,ns级,且抖动小于50,ps.无源延时链的分辨力为250,ps,测量范围为5,ns.要扩展这一延时链的测量范围,计数器部分采用频率至少为200,MHz的时钟,主要用于扩大测量范围至毫秒级,FPGA芯片经过PLL倍频后可以满足这一要求[11-12].控制电路采用单片机89C52控制,在将重合检测信息传送到单片机之前,需要电平转换电路将工作电平由ECL电平转换至晶体管-晶体管逻辑(transister-transister-logic,TTL) 电路电平,然后单片机将数据解码、处理之后,交由显示单元显示,后者通过RS-232接口将测试数据传输到PC上位机,也可以接受上位机的控制命令.

2.3附加延时电路和DLL

附加延时修正模块的主要作用是为了抵消开门信号在传输过程中的附加延时,消除系统误差,保持开始信号和关门信号之间的时间关系不变,提高测量精度.这里采用延时链和分压延迟相结合的方法来实现延时修正.延时链主要是由FPGA中的基本延时单元组成,原理和开门信号经过的延迟模块相同,它主要用于对附加延时的粗调.这里开门信号的主要附加延迟为开门信号触发单稳触发模块时与时钟不同步的延时误差;分压延迟主要采用电阻的分压比来实现延迟的细调,其电路原理及波形原理分别如图4和图5所示,输入信号为Vi,输出信号为Vo,则Vo的电压值始终为ViR2/(R1+R2).由于Vo=ViR2/(R1+R2),则Vo始终小于Vi,当Vi到达触发电平时,Vo需要经过td时间后,才能到达触发电平,所以相当于Vo的上升沿到来的时间比Vi要滞后td.根据这个原理,可以通过改变电位器R2的阻值来改变延时量.理论上分压可调延迟电路调节延迟量的范围为0~∞,延迟量由R1/R2的值来决定.在本系统中,此电路是用于微调关门信号的延迟量,来补偿开门信号的附加延迟,所以R1应远小于R2.实验表明,R1取100,Ω,R2取10,kΩ时比较合适;而且使用分压可调延迟电路在修正关门信号延迟量的同时,对关门信号上升沿的陡峭程度影响不大.当然,分压可调延迟电路当R1/R2的值固定时,其延迟量还受到输入信号的电压上升率的影响.

图4 分压延迟原理Fig.4 Bleeder delay principle

图5 波形原理Fig.5 Waveform principle

考虑到延迟链中每段延时线在长度上的不均匀性和由此带来的非线性测量误差,系统在每个延时单元上附加了延时锁相环DLL——锁时环,以保证信号在传输过程中的时延稳定性[13].延时锁相环DLL是锁相环PLL的另一种形式,它与传统PLL的不同之处在于它用压控延时线电压控制延迟线路(voltage control delay line,VCDL)代替传统PLL中的压控振荡器(voltage-controlled oscillator,VCO)电路并且不需要分频器电路,如图6所示.

图6 DLL结构原理Fig.6 DLL structure principle

压控延迟模块VCDL是DLL中的一个关键部分,其结构如图7所示.

图7 压控延时单元Fig.7 Voltage control delay unit

一个理想的输出延迟时间应该和控制电压呈线性关系.由图7可以看出,m5、m7与m6、m8组成主延迟单元,ml、m2和m3、m4分别构成镜像电流源,为延迟单元提供电流;而m9和m12控制延时参数大小,整个电路有良好的线性.DLL中另一个部分是鉴相器和电荷泵,主要功能是将延时信号与参考信号对比,得到其相位差信息.电荷泵再将该相位差转换为误差电压信号,控制延时单元调整延时,使得延时线的总延时与参考信号的周期相等.DLL电路主要是用来将量程由纳秒级扩展到百纳秒级,且要保证延时单元的延时准确性和稳定性[14].

2.4单稳态触发及计数电路

图8为单稳态触发及计数的集成电路部分.其中Clk为系统时钟,选为200,MHz,用来控制开门_输出信号的脉宽及周期,使其等于延时链的延时范围;Start和Stop信号分别为待测时间间隔的开门和关门信号;Reset为系统的全局复位信号;Start_Feedback为延时链的输出反馈信号;Start_Out为开门信号经过单稳触发模块后输入到延时链中的开门信号;Count_Out为开门信号在延时链中的循环次数计数器的输出.

集成电路的单稳触发部分,每一个开门信号或者延时链的输出反馈信号上升沿都会触发输出一定脉宽的脉冲信号,要求脉冲信号的周期等于延时链的总延时长度,目的是为了重合检测时易于判断相位重合点及译码的方便,因此输出脉冲的低电平时间也要受到控制,防止出现系统测量误差.

图8 单稳态触发及计数电路Fig.8 Monostability trigger logic and count circuit

集成电路的计数部分,在关门信号到来之前,每来一个延时链的输出反馈信号,计数器输出就加1,直到关门信号到来之后,才停止计数.计数值即为开门信号在延时链中的循环次数,同时锁存重合检测电路的输出,以此计算得到在延时链中不足一圈的那部分时间间隔的大小,最后计算得到所测时间间隔大小.

2.5新方案的FPGA实现

基于FPGA的时间间隔测量系统实现框图如图9所示.基于对系统测量速度、功耗、体积、成本及可靠性方面的考虑,系统在具体实现上采用了FPGA集成电路,即将延迟链模块、单稳触发及计数模块、重合检测模块、锁存译码模块、计数锁存模块、附加延时修正模块及数据处理模块等逻辑电路全部集中在FPGA芯片上,使各部分达到最佳优越性能[15].开门信号和关门信号经整形后被送往FPGA,微控制单元(micro controller unit,MCU)从FPGA中采集数据并进行处理,最后计算结果在液晶显示器(liquid crystal display,LCD)上显示出来.至此,基于延时复用技术的FPGA实现方案不仅巧妙地解决了高分辨力与窄测量范围之间的矛盾,而且还简化了电路结构,同时系统的稳定性也得到了极大提高.目前,基于图9的时间间隔测量系统已研制出样机,经实际测试能够达到10皮秒级至皮秒级的分辨力.

图9 基于FPGA的系统实现方案Fig.9 System implementation scheme based on FPGA

3 实验及误差分析

3.1测量实验

根据图3所设计的时间间隔测量方案,具体在FPGA中实现.在参考频率为200 MHz的情况下,若设置测量分辨力为20,ps,则最大测量误差为20,ps,其测量精度为2.5,ps.在FPGA中通过计数器和参考频率产生一系列时间间隔,分别与HP5370B所测时间间隔进行比较,其测试结果如表1所示.

表1 实验结果Tab.1 Experimental results

从表1可以看出,HP5370B与新测量系统的比较结果存在的最大误差是20,ps.分析其误差原因,主要是新系统延时单元的不均匀性所形成的非线性累积误差造成的,此外还有随机误差.对于系统误差和非线性误差,可通过软件修正的方法对测试结果进行修正,从而提高系统的测量精度.

3.2误差分析

3.2.1 延迟线的延时误差

由于延时导线的不均匀性会导致延时单元误差σ,并且随着延时单元的增加,造成非线性累积误差[16]INLDNLσ.通过对重合检测电路临界点的观察,得出各个延时单元的延时.非线性累积误差状况如图10所示,测量结果的均方值为8.6 ps.

图10 测量系统的非线性累积误差Fig.10 Nonlinearity cumulation error of measurement system

3.2.2 量化误差

量化误差是系统在时间数字化过程中产生的误差[17],如图11所示.由图可知,若被测时间间隔为tx,在测试过程中,可能得到2个结果tx1或tx2,其中tx1≤tx2,且tx≤tx2=tx1+Δt,Δt为测量分辨力,其不确定度为ε1和ε2.于是,由量化产生的随机误差可以用二项分布的标准差来表示,即

式中:p为xt取值为2xt的概率;1p-表示xt取值为1xt的概率.由此可知,当0.5p=时,系统的最大量化误差为/2tσ=Δ.若对式(2)在01p≤≤范围内进行积分,便可以得到平均标准偏差

利用多次测量平均的方法可以减小量化误差.当测量次数为M次时,平均标准偏差为

按式(4)计算,量化误差测量结果为102 ps.

图11 量化测量示意Fig.11 Schematic diagram of quantified measurement

3.2.3 随机误差

随机误差主要是内部噪声和外部噪声所引起的触发误差造成的.内部噪声主要是时钟相位噪声和电源噪声等.外部噪声主要是电路之间的干扰造成的,必须有耦合路径才可能出现外部干扰,包括传导耦合、容性耦合和感性耦合.容性耦合是由于两个导体之间的电场引起的,而感性耦合是由于电流变化引起磁场变化造成的.

3.2.4 重合检测电路带来的误差

这种误差主要表现在重合检测电路本身重合检测存在的误差和不同重合检测电路的离散性造成的误差.在实际测量中,延时开门信号和关门信号的上升沿之间并非严格重合而是存在一个微小时间差Δt′,如图12所示.由于重合检测电路的性能受到多种因素的影响,如噪声、失配等,于是两个相同结构的重合检测电路之间也存在差异.所以,这个差异应该是Δt′±δ,其中δ为重合检测电路检测的误差,Δt′则可以理解为系统误差[18].重合检测的误差是影响测量不确定度的主要因素之一,它主要由脉冲信号上升沿的稳定性和重合检测电路的噪声性能所决定.

图12 重合检测的误差分析Fig.12 Error analysis of coincidence detection

3.2.5 软件修正

软件修正就是根据多次测量的结果,建立一个误差修正值的查找表,将其存储在内存中.然后在实际的测量中,通过查找表中预先设定的修正值,可以对测试结果的系统误差和非线性误差进行修正,从而改善系统的精度.

4 结 语

基于时-空关系的时间间隔测量系统具有极高的测量分辨力,它是以电磁信号在导线中传输的时延稳定性这一自然现象为基础的新的测量原理和方法,它能测出少于1个延时单元的时间,但其测量范围很窄,因而限制了它的广泛应用.为了进一步扩展其测量范围和完善这种全新的理论,笔者提出了一种基于延时复用的时间间隔测量方法.这种方法利用反馈和单稳触发逻辑判断技术,实现了一个延迟链可以重复使用的循环检测,不仅扩展了其测量范围,通过对测量误差的硬件补偿和软件修正,其测量分辨力和测量精度也得到了进一步提高.改善后的实际测试结果表明,新方法所能达到的测量分辨力为37 ps,测量精度为23 ps,这和理论分析的所能达到皮秒量级的测量分辨力和精度是一致的.由于系统在具体实现上采用了FPGA,并在传输路径上附加了锁时环,因而大大简化了电路结构,降低了成本.随着微电子技术的发展,这种新技术将有可能对现代时频测控技术的进一步发展具有一定的推动作用.

[1] 王 海,周 渭,宣宗强,等. 一种新的时间间隔测量方法[J]. 西安电子科技大学学报,2008,35(2):267-271.

Wang Hai,Zhou Wei,Xuan Zongqiang,et al. Novel short time interval measurement method[J]. Journal of Xidian University,2008,35(2):267-271(in Chinese).

[2] 周晓平. 导航定位中高分辨率的时间处理技术的研究[D]. 西安:西安电子科技大学机电工程学院,2009.

Zhou Xiaoping. Research on the High Resolution TimeProcessing Technology in Navigation Positioning[D]. Xi’an:School of Mechano-Electronic Engineering,Xidian University,2009(in Chinese).

[3] 李 琳. 基于时-空关系的时间间隔测量[D]. 西安:西安电子科技大学机电工程学院,2008.

Li Lin. Time Interval Measurement Based on Time-Space Relationship[D]. Xi’an:School of Mechano-Electronic Engineering,Xidian University,2008(in Chinese).

[4] Li Lin,Zhou Wei. A time-to-digital converter based on time-space relationship [C]//2007 IEEE Frequency Control Symposium. Geneva,Switzerland,2007:815-819.

[5] Zhou Wei. A time interval measurement technique based on time-space relationship processing[C]//2006 IEEE Frequency Control Symposium. Honolulu,HI,2006:260-266.

[6] 偶晓娟,周 渭. 基于时-空关系的时间间隔与频率测量方法研究[J]. 仪器仪表学报,2006(4):36-39.

Ou Xiaojuan,Zhou Wei. Reasearch on the method of time interval and frequency measurement based on the relationship of time-space[J]. Chinese Journal of Scientific Instrument,2006(4):36-39(in Chinese).

[7] 伏全海,周 渭. 基于CPLD的时间间隔测量仪[J].计量技术,2004(7):5-8.

Fu Quanhai,Zhou Wei. Time interval measurement instrument based on CPLD[J]. Measurement Technique,2004(7):5-8(in Chinese).

[8] 江玉洁,周 渭. 新型频率测量方法的研究[J]. 仪器仪表学报,2004,25(1):30-33.

Jiang Yujie,Zhou Wei. A study of new methods about frequency measurement[J]. Chinese Journal of Scientific Instrument,2004,25(1):30-33(in Chinese).

[9] 周 渭. 基于时空和时相关系的时频处理方法[J].宇航计测技术,2007(增):72-77.

Zhou Wei. Time and frequency processing methods based on time-space and time-phase relationships[J]. Journal of Stronautic Metrology and Measurement,2007(Suppl):72-77(in Chinese).

[10] 李君雅. 基于无源和有源延迟链的频率时间测量方法及研究[D]. 西安:西安电子科技大学机电工程学院,2009.

Li Junya. Frequency and Time Measurement Method and Study Based on Passive and Active Delay Chain[D]. Xi’an:School of Mechano-Electronic Engineering,Xidian University,2009(in Chinese).

[11] Zhou Hui,Zhou Wei. A time and frequency measurement technique based on length vernier [C]//2006 IEEE Frequency Control Symposium. Honolulu,HI,2006:267-272.

[12] Kalisz J. Review of methods for time interval measurements with picosecond resolution [J].Metrologia,2004,41(1):17-32.

[13] Xie Dingkai,Zhang Qichao,Qi Gaosun,et al. Cascading delay line TDC with 75 ps resolution and a reduced number of delay cells[J]. Review of Scientific Instruments,2005,76:240-246.

[14] 偶晓娟. 皮秒级时频处理原理及电领域传输速度异常现象研究[D]. 西安:西安电子科技大学机电工程学院,2007.

Ou Xiaojuan. Study on Time-Frequency Processing Theory with ps Resolution and Abnormal Phenomenon of Transfer Speed in Electronic Field[D]. Xi’an:School of Mechano-Electronic Engineering,Xidian University,2007(in Chinese).

[15] 王 海. 精密时频测量和控制技术研究[D]. 西安:西安电子科技大学机电工程学院,2007.

Wang Hai. Researches on High-Accuracy Measurement and Control Techniques for Time-Frequency[D]. Xi’an:School of Mechano-Electronic Engineering,Xidian University,2007(in Chinese).

[16] Szplet R,Kalisz J,Szymanowski R. Interpolating time counter with 100 ps resolution on a single FPGA device[J]. IEEE Transactions on Instrumentation and Measurement,2000,49:879-882.

[17] Kalisz J,Pawlowski M,Pelka R. Error analysis and design of the nutt time-interval digitizer with picosecond resolution[J]. J Phys E:Sci Instrum,2007,20:1330-1341.

[18] Jansson J P,Mantyniemi A,Kostamovaara J. A CMOS time-to-digital converter with better than 10 ps singleshot precision[J]. IEEE Journal of Solid-State Circuit,2006,41:1286-1296.

Short Time Interval Measurement Method Based on Delay-Time Multiplexing Technique

DU Bao-qiang1,2,ZHOU Wei1
(1. Department of Measurement and Instrument,Xidian University,Xi’an 710071,China;2. Department of Information Engineering,Henan Vocation and Technical College,Zhengzhou 450046,China)

A new short time interval measurement method based on delay-time multiplexing technique has been proposed. According to the time interval measurement principle based on time-space relationship,a delay chain was composed of several delay-time units. Output of the delay chain was fed back to the system input end and judged by monostability trigger logic with the original input signal. The result of the judgement was sent back to the coincidence detection circuit to realize repeated cycle detection of a delay chain. Therefore,the range of time interval measurement based on time-space relationship is expanded and the stability of the measurement system is improved. Experiment and analysis results show that the method is scientific and advanced,with measurement resolution from hundred picoseconds to ten picoseconds. Combined with fieldprogrammable gate array(FPGA)on-chip technique,the new measurement method has the advantages of simple structure and low cost.

time-space relationship;short time interval;delay-time multiplexing;cycle detection;error analysis

TM935.15

A

0493-2137(2010)01-0077-07

2008-12-05;

2009-02-20.

国家自然科学基金资助项目(60772135;10978017);中国空间技术研究院创新基金资助项目(CAST:20080403).

杜保强(1973— ),男,博士研究生.

杜保强,dubaoqiang2008@yeah.net.

猜你喜欢
分辨力重合延时
超二代像增强器分辨力随输入照度变化研究
基于级联步进延时的顺序等效采样方法及实现
日光灯断电关闭及自动延时开关设计
不同数学函数算法对SPECT空间分辨性能检测影响分析
电力系统单回线自适应重合闸的研究
64层螺旋CT空间分辨力评价方法解析
Two-dimensional Eulerian-Lagrangian Modeling of Shocks on an Electronic Package Embedded in a Projectile with Ultra-high Acceleration
大气色散对4m望远镜成像分辨力的影响与校正
桑塔纳车发动机延时熄火
浅析重合闸