5.8GHz WiMAX宽带无线通信射频系统设计

2010-05-15 00:29赵小虎潘子春
无线电通信技术 2010年3期
关键词:衰减器基带增益

赵小虎,潘子春,周 雨

(1.安徽四创电子股份有限公司,安徽 合肥 230088;2.安徽电力通信有限公司,安徽 合肥 230061)

0 引言

固定WiMAX标准基于正交频分复用(OFDM)技术,使用256个副载波;该标准支持1.75~28MHz范围内的多个信道带宽,同时支持多种不同的调制方案,包括BPSK、QPSK、16QAM和64QAM。由于信号宽带及高调制方式等多项技术参数导致射频设计充满挑战性。

1 主要芯片完成功能

本设备采用超外差时分双工方式来完成设计,在符合WiMAX标准的射频套片推出之前,成功选用SIGE公司生产的中频芯片SE7051L10和Texas instruments公司生产的射频芯片TRF2436来完成设计。中频频率固定为380MHz,射频频率在5.725~5.850GHz频段内可选。

1.1 SE7051L10

SE7051L10主要完成功能为:

①在发射时隙内完成I、Q基带信号上变频为380MHz的固定中频信号;

②在接收时隙内完成接收的380MHz的固定中频信号下变频为零中频的I、Q基带信号;

③完成合成IF和RF所需的LO功能;其中中频LO频率为固定的380MHz;RF本振频率可选,以便系统工作在期望的工作信道内;

④在发射和接收通道,均内置可变增益放大器,同时Tx通道具有18dB的增益控制范围(步进6dB),和50dB TX增益控制范围(步进1dB),Rx通道具有50dB的自动增益控制范围。

1.2 TRF2436

TRF2436完成功能为:

①在发射时隙内完成380MHz的固定中频信号上变频到所需的RF信道频率;

②在接收时隙内完成接收的RF信号放大并下变频为380MHz的固定中频信号;

③片内内置收发开关、低噪声放大器及开关控制的功率放大器;

④内置射频本振倍频器。

2 总体设计

由于SE7051L10与TRF2432非同一公司套片,需重新设计,主要从以下几点考虑。

中频芯片SE7051L10产生射频本振,其合成频率范围2 850~3 350MHz,若系统选用低本振,要求最低频率为2 672.5MHz,SE7051L10无法满足该要求,系统只能选用高本振,高本振要求频率为3 052~3 115MHz;选用高本振将导致中频及基带频谱镜像,对点对点系统而言,由于接收下变频将发射的上变频导致的频谱镜像翻转,系统会不留痕迹进行解调;但作为CPE设备,无法与标准基站对联,采用基带I、Q信号颠倒连接,巧妙地解决选用高本振导致的频谱翻转,与标准信号源对联,系统工作正常。

SE7051L10的收发中频为各自独立的差分输入输出,而TRF2436收发中频为共用的差分输入输出,为解决此问题,选用2只单端双掷开关,通过收发切换控制信号,将SE7051L10的收发中频各自独立的差分输入输出切换至TRF2436要求共用的中频差分输入输出,效果良好。

作为WiMAX CPE设备,基站为适应不同用户端设备要求,其系统接收增益固定,不具备AGC功能,为保证接收信号幅度恒定,通过动态调整不同CPE设备的发射功率;因此要求WiMAX CPE设备发射通道具有超过50dB的ALC控制范围;虽然SE7051L10内置步径1dB的50dB衰减器,但中频衰减过大,将影响中频信号的信噪比,从而影响系统性能;而TRF2436是针对802.11系统开发的,发射通道没有提高系统动态的数控衰减器;为增大系统发射动态,在TRF2436的射频滤波器后增加一片步径4dB总衰减28dB数控衰减器。

重新设计SE7051L10射频本振的环路滤波器,优化射频本振的相位噪声,从而改善发射及接收系统的信号相对矢量误差。

TRF2436的本振要求100Ω差分输入,本振功率电平0dBm。通过增加此频段工作的平衡-不平衡变换的巴仑集成块来解决,巴仑集成块平衡输出阻抗为200Ω差分输出,阻抗不匹配通过四分之一波长阻抗变换器来解决;同时,通过一单片放大器将SE7051L10输出本振放大到0dBm,单片放大器也有利于提高本振的输入输出隔离度。

通过收发通道的预算,合理地完成功放及低噪放设计。

3 系统工作流程

系统采用时分双工工作方式,当基带控制的收发开关信号为高电平时,系统工作在发时隙,基带送出的I、Q信号经调制、上变频、功率放大和中频、射频滤波后经开关由天线发射至接收端;在接收端,基带控制的收发开关信号此时为低高电平,系统工作在收时隙,接收的射频信号经开关、低噪放、下变频、相应射频、中频滤波,解调出I、Q基带信号送至基带信号处理单元。系统工作流程如图1所示。

图1 系统工作流程图

4 主要技术指标的实现与指标分配

4.1 发射功率的实现

由于系统的基带采用OFDM调制技术,OFDM是无线通信系统中的一项关键技术,是一种多载波传输技术。多载波传输技术相对于单载波传输技术而言有很多优点,例如抗多径干扰,抗突发噪声和有效地克服频率选择衰落。但OFDM技术的一个主要缺点就是具有很高的峰均功率比(PAPR),高的峰值容易引起非线性失真;同时,由于系统采用较高的64QAM等调制方式,对系统的线性要求较高,针对以上问题,在设计及选用器件时,为保证系统工作在线性区域,所有器件均要求在其P1dB回退10dB工作。

功放设计的难点主要是末级功放的设计,本系统末级功放选用SIRENZA公司生产的SZA5044,其输出P1dB为29dBm,功率回退10dB,其输出线性功率为19dBm,功放末级有一无源收发开关、抑制谐波分量的低通滤波器及MCX插座,其插入损耗总和为1.6dB,在插座输出口输出的线性功率为17.4dBm,满足设备技术指标要求;同时,SZA5044的增益为28dB,为保证设备技术指标16dBm功率输出,SZA5044输入功率要求-9dBm,功放前级的射频开关、数控衰减器及滤波器的插入损耗总和为4.4dB,要求TRF2436的线性功率输出-4.6dBm,TRF2436其输出P1dB为22dBm,线性功率输出12dBm,满足技术指标要求。

4.2 发射通道ALC的实现

由于系统针对点对多点设计,基站的AGC不能工作,基站的接收增益相对固定,为保证系统正常通信,基站端通过测试上行接收基带I、Q的功率电平,与标准I、Q的功率电平比较,计算出功率误差,送至用户端,通过软件开环控制用户端上行的发射功率;为保证有足够的动态,以适应衰落的影响,指标规定用户端的ALC控制范围大于50dB,步径1dB。

本系统的ALC由SE7051L10提供30dB ALC控制范围,步径1dB;同时,数控衰减器提供28dB的ALC控制范围,步径4dB,在实际应用中,实际测试一ALC控制表格,按实际衰减量从小到大排列,步径1dB,通过安捷仑公司的89601软件实际测量发射功率电平,同时保证在50dB的动态范围内,发射的相对矢量误差小于-31dB。在正常工作时,基带软件根据当前ALC控制信号所在控制表格的位置和基站测量的功率误差,动态调整用户端发射功率,保证系统正常工作。

4.3 发射机EVM指标实现

发射机相对矢量误差是衡量发射机综合技术指标之一,由基带I、Q的正交误差、幅度平衡,本振的相位噪声,混频器和功放(PA)线性技术指标和系统频偏等决定。针对本射频系统而言,I、Q的正交误差主要通过PCB板I、Q信号走线严格等长来控制;幅度平衡可通过运算放大器的增益控制电阻来调整;由于本射频系统选用TRF2436作为二次混频的主芯片,混频器集成在芯片内部,无法控制;发射EVM主要由本地振荡器的相位噪声决定,通过合理选用VCTCXO,优化环路滤波器等措施,保证射频本地振荡器的相位噪声指标满足-88dBc@1kHz、-90dBc@10kHz,从而保证TRF2436输出最终功率0dBm时,其相对矢量误差达到-34.5dB;对本系统而言,功放的合理设计决定了发射机相对矢量误差。如前所述,本系统选用的末级功放,在输出功率为16dBm时,其相对矢量误差为2%(-34dB),通过计算系统的相对矢量误差为-32.5dB,满足技术指标要求。

4.4 接收灵敏度及接收AGC设计

接收机灵敏度是反应接收系统主要技术指标之一,对802.16d系统而言,接收机的灵敏度在系统误码率不小于10-6情况下,应按如下公式计算(假定有5dB的余量和7dB的噪声系数NF),Rss=-10+SNRrx+10Log((Fs*200)/256)。采用3.5MHz带宽,这里的Fs=3.5*8/7,SNRrx为系统解调归一化信噪比,对64QAM-3/4而言,其归一化信噪比要求为24.4dB。通过计算,其接收机灵敏度为-72.6dBm。从以上公式可以看出,合理设计低噪声放大器,减低系统的噪声系数,可以提高系统的接收机灵敏度指标;本射频系统的低噪声放大器选用安捷仑公司生产的MGA71543和MGA72543来完成低噪声放大器设计,增益50dB,考虑接插件、开关及滤波器的插入损耗,系统噪声系数4dB,比公式7dB噪声系数改善3dB,相应提高接收机灵敏度3dB,优于该标准规定的要求。

整个系统提供的接收机AGC控制范围为90dB,其中中频增益控制范围为50dB,TRF2436增益控制范围为16dB,数控衰减器28dB,总计94dB。

5 设备特点

该设备具有如下特点:

①低成本。由于选用的是高集成,大批量的通信集成块完成设计,大批量生产时,整机成本几十美元;②高性能。点对点测试时,信道带宽3.5MHz接收机灵敏度-75dBm(64QAM-3/4),优于802.16d协议标准2dB;③结构简单。由于系统选用TDD模式工作,无须过分考虑收发隔离,整机收发在同一块PCB板上完成,收发之间不需要增加屏蔽盒;也不须增加改善收发隔离的双工器;④调试、安装、维修方便。由于选用的器件均为内匹配的器件,一致性好,只要器件安装正确,工艺不出差错,几乎为免调试产品。整机重量轻,安装方便;维修时能迅速定位故障点。

6 结束语

该设计于2007年8月向国家知识产权局申请发明专利,已审通过,专利号200710023309.2。由该设备组成的系统,在安徽省电力通信公司、合肥供电局传输变压器工作状态数据和KP所工作状态数据;系统采用点对点测试,两点之间在部分遮挡通信距离5km情况下,进行上下行链路数据传输,其流量及Ping包测试均符合WiMAX标准要求;同时双向传输电影图像无失真、声音清晰,系统工作稳定。

[1]王文博,郑侃编著.宽带无线通信OFDM技术[M].北京:人民邮电出版社,2003.

[2]IEEE Std 802.16TM-2004 IEEE Standard for Local and metropolitan area networks[S].

猜你喜欢
衰减器基带增益
基于步进衰减器法的噪声系数分析仪噪声系数校准的一种方法
电调衰减器驱动电路的设计
一款DC~40 GHz 六位数控衰减器芯片设计
基于增益调度与光滑切换的倾转旋翼机最优控制
Ag元素对Ni-7at.%W合金基带织构形成的影响
RF MEMS衰减器中功分器的优化与设计
基于单片机的程控增益放大器设计
苹果推出自研基带芯片要过几道坎?
苹果10亿美元为5G买“芯”
基于Multisim10和AD603的程控增益放大器仿真研究