陈 东
摘要:高校的财务信息化工作从会计电算化发展到现在的信息管理系统,趋势必将是财务决策支持系统,而数据仓库是决策支持系统的核心。该文根据高校的特点,设计了基于数据仓库技术的决策支持系统。系统通过在某高校的实际应用,取得了良好效果。
关键词:数据仓库 决策支持 数据分析 OLAP
中图分类号:TP311.52 文献标识码:A 文章编号:1673-8454(2009)11-0028-04
学校财务管理是高校事务管理的核心环节之一,是学校日常工作正常进行的保障。它和学校各级部门、各级人员都有密不可分的关系。随着时代的发展和改革的不断深入,高校财务管理日趋复杂化、多元化,管理者使用传统算法或依靠经验判断已不能满足财务管理的需求。强化财务管理,充分使用信息资源,提高决策的科学性是解决问题的关键,加强财务事前预算、事中控制、事后评估分析是科学决策的有效途径。
一、设计高校财务决策支持系统的必要性
随着高校财务信息化工作的不断发展,高校早已实现会计核算电算化,建立了内部局域网。发展步伐比较快的高校还自行开发或采购使用了其他一些业务管理系统,如工资管理系统、学生收费管理系统、国库集中支付系统、预算管理系统、非税业务系统等。对很多高校来讲,这些系统都是由不同的人来操作,以完成对各财务具体业务工作的处理,各系统功能相互独立,且运行在不同的网络上,无法实现相互之间的沟通和联系,更不能实现信息资源的高度共享,而在实际的业务流程中,往往对不同的财务子系统的信息共享存在着很大程度的需求。高校财务管理水平的提高应实现核算型向管理型的转变,管理也就是决策,目前高校财务决策的内容通常包括:(1)资金的筹集(财政性资金、科研收入、学费收入、其他收入、银行贷款等);(2)资金的分配(预算安排、项目投资等);(3)资金的使用(预算执行情况);(4)资金的评价(使用效益分析、绩效评价指标分析、教学评估指标分析、财务危机风险分析等)。
可以看出,以上任何一项决策都难以根据现有的业务管理系统直接得出,财务工作要大幅度地提高效率,必须使用更有效的机制,即设计和开发一个决策支持系统。只有这样,才能实现对财务信息的充分利用,使之为管理层服务,起到辅助决策的作用。高校财务决策支持系统是以各业务处理子系统积累的历史数据为基础,根据领导对辅助决策信息的需求,以及财务分析自身发展的需要而设计的一个专用决策支持系统,它是会计核算管理系统的发展方向。由于学校财务本身的特点,导致市场上很少有成熟的财务决策软件适合学校财务决策的需要,因此,必须根据学校的具体情况,设计适合使用的财务决策支持系统。
二、设计基于数据仓库的高校财务决策支持系统的意义
数据仓库技术从一面世,就受到了学术界、企业界的重视,它在大型的计算机信息系统中得到了应用。数据仓库使数据库技术的应用范围从支持操作层面的联机事务处理,支持中间管理控制层面的管理信息系统,提高到了支持决策层面的决策支持系统,它为决策支持带来了一些新的方法和技术。
目前,数据仓库一词尚没有一个统一的定义,著名的数据仓库专家William H. Inmon在其著作《Building the Data Warehouse》一书中给予如下描述:数据仓库(Datawarehouse)是一个面向主题的(SubjectOriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(TimeVariant)的数据集合,用于支持管理决策。对于数据仓库的概念我们可以从两个层次予以理解。首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。[1]将数据仓库用于决策支持系统,主要有以下几个方面的作用:
(1)增强了DSS(决策支持系统)决策的客观性。DSS中数据仓库的数据是面向分析组织的,比面向应用组织的传统数据库更加适合决策分析需求:数据仓库的数据类型丰富、数据容量大、保存时间长,为预测趋势、制定决策战略提供了充足的信息,使决策方案更具客观性。
(2)增强了决策支持系统的实用性。DSS中的数据仓库集模型库、方法库、数据库为一体,以数据驱动运行模式代替传统DSS的模型驱动模式,且实现了分析方法与数据结构相分离,使方法库及数据的扩充具有相对独立性。
(3)提高了数据查询、分析效率。数据仓库可通过提取器自动追加数据,以及通过数据视图生成器自动生成数据视图,能及时快速地准备好各层次数据,使查询瞬间完成,可大大提高数据获取效率。
(4)具有强大的数据分析工具。利用OLAP分析工具、数据挖掘工具及图形工具等,使决策者能从各角度分析数据,提供更全面、更丰富的战略性辅助信息及被忽略的重要因素。
(5)具有动态扩展性能。基于数据仓库的DSS通过内在反馈机制,使用户需求逐渐明确,DSS系统结构日趋完善。
综上所述,高校的财务业务处理系统存在着操作平台不一致、数据格式不一致、自动化程度不一致、共享程度低、操作复杂、查询不便等问题。由于这些问题的存在,财务工作不能完全适应办公自动化、信息化的要求,难以提供及时、准确的财务统计信息供高层决策人员作出决策,阻碍了财务管理水平的进一步提高。为从根本上解决以上问题,必须建立同会计核算和财务管理相适应的一套新系统,该系统不但能集成财务部门所需要的会计信息和与其相关的信息,而且能从多角度对会计指标进行分析,并能根据需要进行决策,方便财务部门的管理和领导查询决策,提高财务管理水平。该系统也就是基于数据仓库的财务决策支持系统。具体到财务管理工作来讲,该系统的意义体现在以下方面:
(1)整合数据资源,方便师生和财务人员进行查询;
(2)进行有效会计分析,提高分析效率与准确率;
(3)方便计算生均培养成本;
(4)提高高校财务风险控制和财务预警水平;
(5)为绩效考核教学评估提供基础数据。
三、基于数据仓库的高校财务决策支持系统的总体设计
1.系统整体架构
高校财务决策支持系统首先是个决策支持系统,是为高校财务决策的制定提供支持的一个计算机系统,它具有所有决策支持系统的目标、功能、特征等,是决策支持系统在高校财务领域的应用。传统的电算化会计信息系统基本上局限于实现会计的反映与监督职能,缺乏对会计的预测和辅助决策支持功能,而高校财务决策支持系统是能够直接支持单位高层财务管理决策工作的系统,是为高校财务决策者提供问题分析、模型构造、决策过程模拟以及决策效果评价的决策支持环境。该系统整体框架如图1所示。
图1中主要有五部分:第一部分包括不同的数据来源;第二部分是数据抽取、转换和加载的过程,该过程完成从多个数据源抽取数据,并对数据进行转换、规约,然后将整理好的数据加载到数据仓库;第三部分是企业级数据仓库,为了更好地进行决策支持分析,数据仓库中的数据可进行二次抽取,加载到面向分析主题的数据集市;第四部分是联机分析处理和数据挖掘,实现对数据多维度、多层次的分析和对隐性知识的发掘;第五部分是门户系统,将分析结果内容进行组合,针对不同用户展现不同的定制内容。[2]
2.高校财务数据仓库的设计
数据仓库是决策支持系统的基础,数据仓库设计的好坏直接决定了决策支持系统的成功与否。在高校中,大部门(资金需求量大)、大项目、大资金往往是决策者关注的问题,同时针对高校财务是以预算为主的特点,提出以资金为核心的主题设计,确定数据仓库系统围绕部门、项目、资金、时间来展开分析。
(1)数据仓库总体结构如图2所示
数据仓库从现有多个业务处理系统(源数据)中获取数据,经过清洗、分类后,存储在数据仓库的内部数据库中,通过数据仓库的数据加载工具,向数据仓库提供数据信息。数据仓库获取数据以后,就进入数据仓库的应用阶段。根据具体要求获取不同维度的数据,分析维度数据的层次,建立事实表和维度表,实现数据仓库。
(2)数据仓库模型设计
在数据仓库体系结构设计之后,设计了资金、职工、学生三个主题,其中,以资金作为核心主题进行设计,通过对财务数据的分析,可以得到相应主题的分析结果,这些数据信息有助于作出决策。职工、学生主题是进行辅助分析决策的相关主题,这些主题也反映高校现行发展阶段中所关注的一些方面。[3] 根据各主题的需要,建立事实表和维度表,然后,从各数据源中抽取数据,集成到数据仓库中。为了将数据按内在的逻辑关系有序地放在维度表中,应当提供所描述对象的详细属性,因此事实表是数据仓库的核心。采用星型模型,事实表通过键将各维度表组织起来,共同满足用户的查询需求。对高校财务数据仓库事实表及维度表的设计如表1所示。
在完成数据仓库的模型设计后,建立数据仓库的物理结构,以事实表为核心,结合各维度表,实现对基本数据的存储和预处理,为多维数据分析处理奠定了基础。
3.联机分析处理(OLAP)
在数据仓库系统中,联机分析处理(On-Line Analytical Processing,OLAP)是重要的数据分析工具。OLAP的目标是满足决策支持或多维环境下特定的查询和报表需求,其技术核心是“维”这一概念,因此OLAP也可以说是多维数据分析工具的集合。OLAP分析主要通过对多维数据进行分析、切块、聚合、钻取、旋转等分析操作,以求剖析数据,使用户能够从多种维度、多个侧面、多种数据综合度查看数据,从而了解数据背后蕴涵的规律,以更好地辅助决策。
OLAP在财务数据仓库中的应用是多维数据分析,决策者可以从不同角度、不同层次、不同时段来查询和分析数据。例如,分析近三年来,全校预算资金收入支出变化情况;学校贷款规模变动情况;各部门人员经费、公用经费等支出情况;不同学院不同职级教职工收入(工资收入、科研经费、课酬等)增长情况;学生缴欠费比例分析等。对这些数据的分析结果,将有助决策者对下一年度的预算调整、经费控制、筹资分析、薪资调整等作出科学合理的决策安排。
4.系统实现
数据仓库的建立及OLAP完成了对数据的分析处理,如何将这些结果整理以便更好地展现给决策者。笔者借助目前较为流行的ASP.NET开发技术,采用基于B/S的三层模式(数据层、业务逻辑层和表示层)来实现整个系统。
在ASP.NET中三层结构的前端为Html、Aspx等,前端给中间层传递参数,并接受中间层的参数。中间层为.VB、 .CS等文件编译而成的.DLL控件,通过中间业务逻辑层实现程序逻辑与网页内容分离,实现数据库层的连接与操作。后端为数据库服务器。在本系统实施中,采用了微软全套的.NET开发环境,从而大大增加了系统运行的稳定性、可靠性、安全性及高效性。本系统的中间业务逻辑层采用了ASP.NET创建可重用组件技术,充分利用NET的类库,通过Visual Studio.Net环境将.CS件编译成.DLL文件。微软的.NET技术使用组件时不需要注册,从而大大简化了中间层的组织和管理,提高了系统的可伸缩性和可维护性。在开发三层结构的表示层时,采用了ASP.NET的Server端控件及用户自定义控件代替了以前的ASP脚本语言,使后台ASP程序可以直接访问前台窗体元素的属性,同时利用ASP.NET提供的“数据绑定”技术与数据源(比如数组、XML文件、数据库等)连接,实现数据的动态联接。
在数据访问上,一方面通过.NET框架中全新的数据访问技术ADO.NET访问Web数据库,提供对数据一致的、断开的访问模式。另一方面利用SQL Server2000及其存储过程的高效性和安全性,为在NS服务下运行的数据库的Web应用程序提供了高性能的数据存储服务。ADO.NET中的Dataset组件在内部采用XML来描述数据,可以容纳具有复杂关系的数据,并且不再依赖于数据库链路。另外,Dataset包含一个或多个DataTable对象的集合,不管数据来源于一个关系型的数据库,还是来源于一个XML文档,都可以用一个统一的编程模型来创建和使用它,从而提高了程序的交互性和可扩展性。同时,采用.NET提供应用程序与数据源的连接,实现对数据源中数据的检索和修改,从而实现数据库的跨平台访问。[4]
四、结束语
系统的整个框架是在数据仓库技术、联机分析技术和.NET技术的基础上形成的。将数据仓库技术应用于财务决支持系统,不仅具有传统的DSS功能,而且通过使用数据库的联机分析技术强化了DSS的智能功能。数据仓库技术作为信息化的解决方案,是信息技术在高校管理现代化实现过程中的有效手段和重要途径。
参考文献:
[1]李志刚,马刚.数据仓库与数据挖掘的原理及应用[M].北京:高等教育出版社,2008:6-11.
[2]陈俊,王崑声.基于数据仓库的决策支持系统的设计与实现[J].计算机工程与设计,2008,第29卷第20期:5281.
[3]赵宝华,阮文惠.高校财务数据仓库的设计与实现[J].计算机工程,2008,第34卷第17期:267-268.
[4]李淑平.基于Internet的财务决策支持系统的设计[J].中原工学院学报,2007,第18卷 第2期:62-63.