郭 巍
摘要:单相接地对中压电网的影响,主要取决于系统中性点接地方式。本-文对目前中压电网系统的热点问题进行了研究,并详细的对目前常用的几种接地方式进行了优点比较与探讨。
关键词:中性点接地城市电网
1城市中压电网接地方式的发展
随着城市建设步伐的加快,城市框架不断的拉大,城市中压电网(6-35千伏系统)规模也随之增大,再加上近几年电力电缆线路的大量采用,中压电网系统的电容电流水平急剧增加,这给电网的安全运行带来了一些问题:系统单相接地时较大的电容电流产生的跨步电压和接触电压对人身安全将构成极大的威胁;单相接地电弧不易熄灭,电弧接地产生的弧光过电压对设备绝缘的威胁;系统长时间带单相故障运行容易发展成为相间短路或三相故障。
电力系统的中性点接地方式主要有两大类:凡是单相接地电弧能够瞬间白行熄灭者,属于小电流接地方式,主要有中性点谐振(经消弧线圈)接地方式、中性点不接地方式和中性点经高电阻接地方式等。凡是需要断路器遮断单相接地故障者,属于大电流接地方式,主要有中性点直接接地方式、中性点经低电抗、中电阻和低电阻接地方式等。
由于工业发展较快,使电力传输容量增大,距离延长,电压等级逐渐升高,电力系统的覆盖范围不断扩大。在这种情况下发生单相接地故障时,接地电容电流在故障点形成的电弧不能自行熄灭,同时,间歇电弧产生的过电压往往又使事故扩大,显著的降低了电力系统的运行可靠性。由单相接地引起中压电网的故障和异常,具有多发性、隐蔽性、广泛性、不可预见性及多样性等特点,应予以高度重视,找出原因及制定措施加以解决。
单相接地对中压电网的影响,主要取决于系统中性点接地方式。电力系统中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压、继电保护、通信干扰、系统发展规划及资金投入、电网现状和有关运行经验、接地装置等问题有密切的关系。
为了解决系统中出现的这些问题,世界上两个工业发达国家分别采取了不同的解决途径。德国为了避免对通信线路的干扰和保证铁路信号的正确动作,采用了中性点经消弧线圈的接地方式,消除瞬间的单相接地故障:美国采用了中性点直接接地和经低电阻接地方式,并配合快速继电保护,瞬时跳开故障线路。这两种具有代表性的解决方法,对以后电力系统中性点接地方式的发展产生了很大的影响。
2中压电网不同接地方式比较
目前,中压电网有代表性的接地方式分为四种:中性点不接地方式、中性点诣振接地方式、中性点经低电阻和中性点经中电阻接地方式。
2.1中性点不接地方式适用于单相接地故障电容电流小于10安培、以架空线路为主的配电网。此类型电网瞬时性单相接地故障占故障总数的60%~70%,希望瞬时性单相接地故障时不马上跳闸。中性点不接地系统的特点:①单相接地故障电流小于10安培,瞬时性单相接地故障点电弧可以自熄,熄弧后故障点绝缘可以自行恢复。②单相接地时不破坏系统对称性,可以带故障运行一段时间,以便查找故障线路。③通讯干扰小。④简单、经济。⑤单相接地故障时,非故障相对地工频电压升高3倍,在中性点不接地电网中,各种设备的绝缘要按线电压的要求来设计。⑥当单相接地故障电流大于10安培时,可能产生过电压倍数相当高的间歇性电弧接地过电压,对网内绝缘较差的设备、有绝缘弱点的设备、绝缘强度较低的旋转电机等都存在较大的威胁,在一定程度上影响电网的安全运行。⑦易发生谐振过电压引起电压互感器熔断器熔断、烧毁电压互感器的事故常有发生。
2.2中性点谐振接地方式目前,谐振接地方式一般采用自动跟踪消弧线圈,具有以下特点:①利用消弧线圈的感性电流对电网的对地电容电流进行过补偿,使单相接地故障电流限制在10安培以内,对人身安全有利。②瞬时性单相接地故障点电弧可以自熄,熄弧后故障点绝缘可以自行恢复。③可以减少间隙性弧光接地过电压的发生概率。④单相接地时不破坏系统对称性,可以带故障运行一段时间,以便查找故障线路。⑤可以根除电压互感器铁芯饱和过电压。⑥操作过电压一般能抑制在2.8倍相电压以下。⑦限制电缆故障的发生和扩大。根据美国统计,电缆故障的66%是由外皮向内部发展的。电缆本体对地绝缘能力的丧失是一个逐渐发展的过程。采用自动跟踪消弧线圈接地方式对三相对地导纳的不平衡十分敏感,可以在故障起始阶段便能被反映出来。如果处理及时,就可防止绝缘被击穿。万一击穿,由于故障点的残余电流很小,很难形成相间短路事故。⑧通讯干扰小。⑨运行管理比较简单。⑩单相接地故障时,非故障相工频电压最高升到3相电压。⑩对于电容电流很大的配电网,如果通过补偿要使单相接地故障电流残流小于10安培,就必须使系统保持较小的脱谐度,系统的脱谐度过小,对由于三相电容不对称引起的中性点位移电压会产生较强的放大作用,容易使中性点电压偏移超过规程允许值。⑥寻找单相接地故障线路困难,目前小电流接地选线装置的选线正确率还不理想,往往还要采用试拉法。
2.3中性点低电阻接地方式适用于以电缆线路为主、瞬时性单相接地故障很少的、系统电容电流比较大、网架坚强合理、自动化水平高的中压电网。中性点低电阻接地方式的特点:①可以降低工频过电压,单相接地故障时非故障相电压小于3倍相电压.且持续时间很短。②有效地限制弧光接地过电压,在中性点经电阻接地的配网中,当接地电弧熄弧后,系统对地电容中的残荷将通过中性点电阻泄放掉,在下一次燃弧时其过电压幅值和从正常运行情况发生单相接地故障时的情况相同,不会产生很高的过电压。中性点电阻阻值越小,泄放残荷越快。适当选择中性点电阻值,可以将过电压倍数限制在2.8倍相电压以下。③中性点电阻相当于在谐振回路中并接一个阻尼电阻,由于电阻的阻尼作用,基本上可以消除系统的各种谐振过电压。试验表明,只要中性点电阻不是太大(不大于1500欧姆),就可以消除各种谐振过电压,电阻值越小,消除谐振的效果越好。④中性点经低电阻接地系统可以简单的配置零序过流保护,在发生单相接地故障时,当故障电流达到零序保护动作值时零序保护动作,跳开本线路的断路器。⑤在低电阻接地系统发生接地故障时,当故障电流达到零序保护动作值时可以在很短时间内动作,将电源切除,这就大大降低了人员接触带电故障设备的机会。⑥有利于提高系统安全可靠运行水平。由于系统的工频电压升高和暂态过电压倍数较低,对采用常规标准的设备则安全可靠性和设备使用寿命有所提高。⑦中性点经低电阻接地系统,在发生单相接地故障时,故障点流过的电流远大于谐振接地和不接地系统,故障点的高温电弧、跨步电压和接触电压对人和动物构成较大威胁。当故障电流达不到零序保护动作值时,则对人身安全更加不利。⑨中性点经低电阻接地系统,对通信、电子设备干扰大,综合投资相对较高。
2.4中性点中电阻接地方式为了避免或减轻低电阻接地方式的缺点,而又要克服高电阻接地时过电压水平与绝缘水平高、继电保护运行不可靠等弊端,有些国家采用了折衷方案——中电阻接地,以求将接地故障电流限制到100~200安培,同时还能满足下列各方面的要求:①应保证IR=(1.0~1.5)lC(IR为单相接地短路电流的阻性分量,IC为单相接地短路电流的容性分量),以限制内部过电压水平不超过2.6倍。分析表明:进一步增大IR(即减小电阻),对降低内过电压水平已收效不大。由此可按Ic推算出应选用的阻值;②应保证接地保护的灵敏度和选择性,网内发生单相接地故障时即予快速切除;③应满足设备和人身安全方面的要求,为此需分别按通信干扰、设备安全、人身保安等几方面进行验算,使之在接地电阻不大于0.5幅的发电厂和变电所内,上述几方面均能符合规定。