杨 刚 余永权 张维威 黄 英
摘 要:可拓控制是应用可拓学的信息转换方法来解决实际控制系统中的矛盾问题的一种新型的智能控制方法。首先简要介绍传统的可拓控制器的结构及算法,在此结构基础上提出一种改进的可拓控制算法,并且借助于Matlab仿真平台观察改进算法的控制效果,最后与其他算法控制效果进行比较。研究结果表明,改进后的可拓控制算法不但能达到基本的控制要求,并且具有参数整定简单、响应快速、稳定性好等特点。
关键词:可拓控制;关联度;控制仿真;Matlab
中图分类号:TP391.9 文献标识码:A 文章编号:1004-373X(2009)04-138-03
Improvement and Simulation Research of Extension Control Algorithm
YANG Gang,YU Yongquan,ZHANG Weiwei,HUANG Ying
(Guangdong University of Technology,Guangzhou,510006,China)
Abstract: Extension control is a new intelligent control method,which is applied in the means of information transform to solve the inconsistent question of the actual control system.The structure and algorithm of traditional extension controller are introduced,an improved control algorithm is proposed,and Matlab simulation platform is adopted to observe effect of the algorithm,the control effect is compared with others.The results show that the improved algorithm can satisfy the basal control desire and it is better than the others in parameter tuning,response time and stabilization.
Keywords:extension control;dependent degree;control and simulation;Matlab
0 引 言
可拓控制是在可拓学的基础上提出的从信息转换的角度来处理控制问题的理论与方法。可拓控制以控制输入信息的合格度(关联度)作为确定控制输出校正量的依据,通过可拓变换,使被控信息转换到合格的范围内,解决控制系统中不可控和需要控制之间的矛盾[1]。文献[2]提出了一种可拓控制器的设计方法,并探讨了特征模式划分与关联度计算等问题;文献[3]提出了包括上层可拓控制器和基本可拓控制器的双层自学习可拓控制结构。
该文在上述研究的基础上,提出了一种改进的可拓控制算法,并对其进行仿真研究。研究结果表明,其算法具有简单、快速等优点。
1 可拓控制器
可拓控制方法是将可拓集合论的研究事物的转化关系理论与方法应用到控制问题研究上,通过将不合格范围内的控制变量转化到合格范围内,从而使控制效果从不满意转化到满意。基于这种思想,建立了如图1所示的可拓控制器的结构框图。
图1 可拓控制器结构图
图1所示即为包含上层可拓控制器和基本可拓控制器的双层自学习可拓控制器的结构图。由图可知,特征量选取,特征模式划分,关联度计算,测度模式划分,控制输出5部分组成了下层的基本可拓控制器,其主要完成基本的控制功能。上层可拓控制器主要依靠人们的经验和知识对参数进行整定,作为基本可拓控制器的补充和完善,完成对基本控制的优化,保证良好的控制效果,同时反映可拓控制所强调的矛盾转化问题。
1.1 可拓控制的基本概念
首先介绍与可拓控制相关的基本概念:
(1)特征量:表征系统运动状态的变量,记为C;
(2)特征状态:由特征量C描述的系统状态,记为S;
(3)经典域:由控制指标决定的系统特征状态的取值范围;
(4)可拓域:控制器输出随系统特征状态可调整到合格范围内的特征状态的取值范围;
(5)非域:系统输出不能被调整到合格范围内的特征状态的取值范围;
(6)可拓集合:可拓域内建立的关于特征状态的集合;
(7)特征状态关联度:当前的特征状态与系统控制目标可拓集合之间的关系,记为K(s)。
将其分为K(s)≤-1,-1≤K(s)<0,K(s)≥0三种情况进行讨论,可拓控制主要研究-1≤K(s)≤0的情况;
(8)特征模式:由特征量表示系统运动状态的典型模式,记为:Φi=fi(C1,C2,…,Cn),i=1,2,…,r。其中:Φi表示第i个特征模式;fi表示关于Φi的模式划分;
(9) 测度模式:根据特征状态关联度划分的模式,记为Mi。
1.2 基本可拓控制算法
这里参照文献[3]采用偏差e和偏差微分作为系统的特征量,并将特征状态划分为8个特征模式。假定被控对象的偏差和偏差微分的容许范围分别为eom和om,系统可调的最大偏差和偏差微分分别为em和m。关于特征状态S(e,)的可拓集合可用图2表示,其中阴影部分代表经典域。
图2 二维可拓集合S(e,)
设特征平面e-的原点为S0(0,0),记M0= e2om+ 2om ,M-1= e2m+ 2m ;定义平面内任意一点到原点的距离为Ds=e2+2,称为状态距[4],则有D0=M0,Dm=M-1;定义特征平面e-上任意一点S0(e,)У墓亓度为:
K(s)=(1-|SS0|)/M0,S∈X
(M0-|SS0|)/(M-1-M0),S黊
其中:|SS0|=K1e2+K22,K1,K2是由系统所处的特征模式决定的;X表示经典域。
特征状态关联度K(s)表明了系统特征状态S与特征状态(e,)的可拓集合的关联程度,由此测度模式的划分,即关联度在[-1,0]范围内的特征状态的划分可表示如下:
(1) 测度模式M1,Ф杂Φ奶卣髯刺处于经典控制域内。
M1={s|K(s)≥0}
(2) 测度模式M2,Ф杂Φ奶卣髯刺处于可拓域内。
M2={s|-1≤K(s)<0},
M2i={s|ai-1≤K(s)≤ai,S∈M2,
-1=a0<…<ai-1<ai<am=0}
(2) 测度模式M3,Ф杂Φ奶卣髯刺处于非域内。
M3={s|K(s)<-1}
可拓控制器的输出[3]如下:
u(t)=
u(t-1),K(s)>=0
y(t)/k-KciK(s)sgn(e)+ε,-1≤K(s)<0
um,K(s)<-1
其中:u(t),u(t-1)分别为控制器当前时刻和前一时刻的输出;y(t)为当前时刻被控量的采样值;k为过程的静态增益;Kci为第M2i个测度模式的控制系数;K(s)为特征状态S的关联度; sgn(e)为偏差的符号函数,取法如下:
sgn(e)=1,e>0
0,e=0
-1,e<0
Е弄为小范围修正量,用来消除扰动和过程增益的不准确性,取法如下:
ε=Ki∫t0edτ+Kpe,|e|≤δ
0,|e|>δ
其中:Ki,Kp为适当常数;δ为小正数。
1.3 改进的可拓控制算法
由上述可拓控制算法可知,进行可拓控制时需要整定k,Kci,Ki,Kp,δ等参数。其整定过程依靠人们的经验知识,因此整定比较困难,尤其是Kci的整定直接影响到可拓控制效果的好坏。另一方面,通过仿真实验发现,小范围修正量ε的整定效果不明显。因此,提出改进的控制算法,采用状态距Ds=e2+2来代替原有参数的整定。
(1) 测度模式M1。
经典控制域在完全可控的范围内,而可拓控制主要是在可拓域内发挥作用,因此在此范围内采用PID控制算法,旨在补偿经典域内可拓控制效果不理想的缺点。此时,控制器的输出如下:
u(t)=KPe(t)+KI∫t0e(τ)dτ+KDde(t)dt
其中:e(t),u(t)Х直鹞狿ID控制器的输入和输出;KP,KI,KD三个参数的整定采用Ziegler-Nichols方法。为方便起见,此时记u(t)=u(PID)。
(2) 测度模式M2。
采用改进的可拓控制算法,控制器的输出为:
u(t)=y(t)/k-K(s)psgn(e)+D(s)sgn(e)
其中:u(t),u(t-1)分别为控制器当前时刻和前一时刻的输出;y(t)为当前时刻被控量的采样值;k为过程的静态增益;Kci为第M2i个测度模式的控制系数;K(s)为特征状态S的关联度;D(s)为状态距;p为修正因数;sgn(e)为偏差的符号函数,与上述取法相同。
(3) 测度模式M3。
测度模式M3Ф杂Φ奶卣髯刺较大地偏离经典域,处于非域范围内,此时控制器的输出取幅值。
综上所述,可拓控制器的输出算法如下:
u(t)=
u(PID),K(s)>=0
y(t)/k-K(s)psgn(e)+
D(s)sgn(e),-1≤K(s)<0
um,K(s)<-1
2 可拓控制算法的仿真研究
在该仿真部分,将采用相应的线性对象、延迟对象和非线性对象对改进的可拓控制算法进行仿真试验,并与传统的可拓控制算法和PID控制算法进行比较。其中,PID控制参数的选取均采用Ziegler-Nichols方法整定后的参数,输入信号为单位阶跃信号,仿真时间为500 s。
2.1 线性对象
取线性对象的传递函数为:G(s)=1/(10s+1)4,г蚩刂菩Ч如图3所示。
图3 线性对象的控制仿真结果
图3中,PID表示PID控制输出,EC表示传统的可拓控制算法输出,IEC表示改进后的可拓控制算法输出。
由图3中曲线可知,在误差允许范围内,PID控制、EC和IEC均能收敛,从而达到较满意的控制效果。与其他两种控制方法相比,IEC不但能更快地收敛于稳定值,而且超调量也比较小。
2.2 延迟对象
取延迟对象传递函数为:G(s)=e-10s/(5s+1)4,г蚩刂菩Ч如图4所示。
图4 延迟对象的控制仿真结果
由4图中曲线可知,在误差允许范围内,PID控制、EC和IEC均能收敛从而达到较满意的控制效果。与PID控制相比,IEC能更快地收敛于稳定值;与EC相比,除了能更快地收敛外,IEC的波动较小、超调量几乎为0。
2.3 非线性对象
取非线性对象为开环传递函数G(s)=1/(10s+1)4У牡ノ环蠢∈涑龅钠椒剑控制效果如图5所示。
图5 非线性对象的控制仿真结果
由图5中曲线可知,在误差允许范围内,PID控制、EC和IEC均能收敛从而达到较满意的控制效果。与PID控制相比,IEC能更快地收敛于稳定值;与EC相比,除了能更快的收敛外,IEC的波动和超调量均较小。
3 结 语
从仿真研究来看,改进的可拓控制算法具有参数整定简单、响应快速且稳定等特点。并应用于线性对象、
延迟对象和非线性对象进行仿真研究,验证该算法的可行性和有效性。结果证明了可拓控制具有良好的控制品质和较好的自学习能力,有较好的发展前景。
参 考 文 献
[1]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.
[2]王行愚,李健.论可拓控制[J].控制理论与应用,1994(1):125-128.
[3]潘冬,金以慧.可拓控制的探索与研究[J].控制理论与应用,1996(3):305-311.
[4]Huang Ying,Yu Yongquan,Zhang Ling.Extension Control Algorithm Using Extension Set in Control System[A].Proceedings of the Third International Conference on Information Technology and Applications.2005.
[5]师黎,刘炜.移动机器人可拓控制器的设计[J].微计算机信息,2008(2):224-225.
[6]刘金琨.先进PID控制Matlab仿真[M].2版.北京:国防工业出版社,2004.
[7]翁庆昌,陈珍源.非线性系统的自适应可拓控制器设计[J].中国工程科学,2001,3(7):54-58.
[8]潘健,王俊,汤才刚.基于倒立摆的两种控制策略的研究[J].现代电子技术,2008,31(1):129-143.
作者简介 杨 刚 男,1983年出生,河南人,硕士研究生。主要研究方向为智能控制、嵌入式系统。
余永权 男,1947年出生,教授、博士生导师。主要研究方向为进化算法、可拓工程、嵌入式系统。
张维威 女,1980年出生,硕士研究生。主要研究方向为智能控制、嵌入式系统。
黄 英 女,1971年出生,副教授,硕士生导师。主要研究方向为智能控制、嵌入式系统。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。