干细胞治疗先天性巨结肠的研究进展

2025-02-19 00:00:00陈芸琪郭瑶瑶栾志勇
中国现代医生 2025年2期
关键词:移植干细胞

[摘要]"先天性巨结肠是一种先天性肠道疾病,又称肠无神经节细胞症。干细胞是具有高度增殖能力和多向分化潜能的细胞群体,可用于先天性巨结肠病变肠段的移植治疗,有望修复缺失的肠管神经节细胞。干细胞应用于先天性巨结肠治疗仍处于研究和探索阶段,但其具有良好的应用前景,可为先天性巨结肠患者提供新的治疗选择。本文主要就干细胞治疗先天性巨结肠的研究进展进行阐述。

[关键词]"先天性巨结肠;肠神经系统;移植;干细胞;干细胞治疗

[中图分类号]"R726.5""""""[文献标识码]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.02.032

先天性巨结肠为常见的小儿消化道畸形之一,全球每5000个活产婴儿中便有1例先天性巨结肠患儿[1]。根据病变肠管的长度和累及范围,将先天性巨结肠分为常见型、短段型、长段型、全结肠型和全肠型。男女患病比例与病变类型有关,短段型先天性巨结肠男性发病率为女性的4~5倍,长段型先天性巨结肠男性发病率为女性的1~2倍,多呈散发性且有家族性发生倾向[2]。先天性巨结肠的主要病理特点为病变肠段的肌间神经丛和黏膜下神经丛内的神经节细胞完全缺如[3]。解剖见受累肠段有明显的狭窄段和扩张段,肠管表面失去光泽且无法正常蠕动,造成功能性肠梗阻。患者首发症状多在新生儿期,表现为胎粪排出延迟,伴腹胀及呕吐。手术切除病变肠段是当前治疗先天性巨结肠的主要方式。随着腹腔镜和机器人辅助手术的不断发展,先天性巨结肠手术效果和安全性明显提高,但术后小肠结肠炎、污粪、便秘、吻合口瘘等合并症仍有较高发生率,严重影响患儿的生长发育,降低其生活质量[4-5]。此外,全结肠型和全肠型先天性巨结肠患儿的肠道病变范围广,治疗难度相对较大。近年来,干细胞因其强大的自我更新和多向分化能力受到广泛关注[6]。科学家拟通过干细胞移植弥补先天性巨结肠患者肠道中缺失的神经节细胞,恢复肠道正常生理功能。

1""先天性巨结肠发病与肠神经系统的关系

肠神经系统(enteric"nervous"system,ENS)作为人体内的独立神经系统,对肠道蠕动、分泌和吸收功能起重要调控作用。ENS由肠壁神经元和神经胶质细胞组成[7]。这些细胞大都来源于迷走神经嵴经腹外侧的迁移,少部分来自于骶神经嵴[8]。先天性巨结肠是一种因ENS发育异常导致的先天性疾病。在治疗先天性巨结肠时,除考虑缓解症状外,还应考虑如何恢复或重建ENS的正常功能。神经嵴细胞(neural"crest"cell,NCC)是胚胎发育早期形成的细胞,是能迁移并分化成ENS的细胞。通过诱导干细胞形成NCC并将其移植到患者体内,可促进ENS再生治疗先天性巨结肠[9]。Schlieve等[10]培育出一全功能ENS模型,为肠道疾病的研究开辟新道路。研究表明从先天性巨结肠患儿常规内窥镜检查中采集黏膜活检标本,进而获取ENS干细胞,这一做法提示未来可使用患者来源的细胞进行自体细胞替代治疗,可减少伦理和免疫排斥等问题[11]。

2""干细胞相关研究

干细胞可通过细胞分裂产生与母细胞相同的细胞,并产生至少一种类型的高度分化子代细胞[12]。这不仅保证干细胞群体的稳定,还可为组织的发育和修复提供种子细胞来源。干细胞的来源主要有胚胎组织、胎儿组织、成体组织及经过基因重编程的分化体细胞[13]。根据分化潜能高低,干细胞可分为全能干细胞(totipotent"stem"cell,TSC)、多能干细胞(pluripotent"stem"cell,PSC)、专能干细胞等[14]。TSC既具有分化成组成机体所有细胞类型的能力,又具有分化成胚胎发育时期胚外组织中所有细胞类型的潜能[15]。只有来自受精卵和二细胞阶段的卵裂球才是真正的TSC,因为其能在植入子宫后完成整个发育过程并形成完整个体[16]。Macfarlan等[17]开创性发现胚胎干细胞(embryonic"stem"cell,ESC)中有一小部分细胞表达全能性基因(MERVL、Zscan4),但根据TSC评估标准,目前还未获得真正达到全能状态或代替全能状态的干细胞[18]。PSC具有分化成组织或器官中多种细胞类型的能力,但其不具备分化成滋养层来源所有细胞类型的能力。PSC包括ESC和诱导多能干细胞。专能干细胞是一类能够分化成多种细胞类型的干细胞,通常只能分化成特定谱系细胞,包括神经干细胞(neural"stem"cell,NSC)和造血干细胞等。

3""PSC治疗先天性巨结肠

Fattahi等[19]从人多能干细胞(human"pluripotent"stem"cell,hPSC)中衍生和分离ENS祖细胞,并进一步诱导这些祖细胞分化为肠神经嵴衍生细胞和功能性肠神经元,随后将其移植到先天性巨结肠小鼠盲肠肌层中,观察ENS的变化。结果发现这些细胞在小鼠肠道中广泛定植,可改善小鼠的肠道运动功能。该研究不仅建立了第1个关于人ENS发展的研究平台,还揭示了基于细胞治疗先天性巨结肠的前景。但该研究团队尚未明确具体的作用机制,且移植细胞的功能也没有得到证实。Fan等[9]将hPSC来源的迷走神经嵴细胞和骶骨神经嵴细胞注射到敲除,EDNRB的KO小鼠盲肠中,发现这些细胞不仅表现出较强的迁移能力,还可在肠道环境中分化为ENS细胞,揭示hPSC来源的NCC在ENS中具有重要作用。Frith等[20]发现在体外培养条件下,使用维甲酸可加速NCC分化为ENS祖细胞并定植于肠道内,这不仅优化hPSC的来源,还对人们理解ENS发育及治疗肠道神经相关疾病有重要意义。

ESC是从内细胞团中提取培养获得的细胞系,其可分化成外胚层、中胚层及内胚层细胞,并能产生肠神经元[17,21-22]。ESC在疾病治疗领域应用潜力巨大,但其获取需破坏早期胚胎,这引起伦理争议。因此,科学家希望找到一种可避免使用胚胎的方式获取ESC或类似iPSC,而具有ESC特性的极小胚胎样干细胞是一个值得考虑的选择[23]。2006年,Takahashi等[24]首次使用逆转录病毒将c-Myc等4个转录因子导入成纤维细胞并成功将其重编程为具有类似ESC特性的细胞,称作iPSC。iPSC可在保留宿主基因的同时维持干细胞的多能状态[25]。Lai等[26]提取患者皮肤成纤维细胞来源的iPSC,使用CRISPR/Cas9基因编辑技术,纠正先天性巨结肠相关基因突变,恢复患者肠神经嵴细胞(enteric"neural"crest"cell,ENCC)的功能。目前科研人员对PSC进行大量研究并初见成果。人胚胎干细胞衍生细胞已用于多种疾病的临床治疗研究[27-29]。

4""专能干细胞治疗先天性巨结肠

Micci等[30]从转基因胚胎小鼠的中枢神经系统中成功分离出NSC,并将这些细胞移植到缺乏神经元型一氧化氮合酶(neuronal"nitric"oxide"synthase,nNOS)小鼠胃幽门部;结果显示移植的NSC不仅能在胃内存活,还能表达nNOS并合成一氧化氮,恢复胃肠道正常功能。另一研究也证明将中枢神经系统来源的NSC移植到无神经节细胞的大鼠直肠肌层中,可产生表达nNOS和胆碱乙酰转移酶的神经元和神经胶质细胞,进而形成新的神经网络,缓解大鼠肠道运动障碍[31]。虽然NSC在改善肠道运动功能方面的潜力在动物实验中得到初步证实,但从中枢神经系统获取NSC的方法受到伦理限制。因此,是否能利用iPSC分化为NSC值得商榷。

肠神经干细胞(enteric"neural"stem"cell,ENSC)起源于神经嵴,主要位于成体肠道肌层中,通过迷走神经嵴在胚胎早期迁移至肠道,发育形成ENS。Hotta等[32]获取正常小鼠的ENSC,并将其移植到nNOS-/-小鼠(敲除nNOS基因)结肠中,发现移植的ENSC与小鼠肠道平滑肌细胞形成功能性连接。ENSC可直接来源于神经组织,也可由间充质干细胞诱导分化而来。Stavely等[33]研究发现,ENSC和肠间充质细胞可共同促进ENS的正常发育,肠间充质细胞分泌的信号分子可模拟肠道微环境,促进ENSC的扩增和分化。以上实验表明移植后的ENSC可迁移并整合到受损肠道组织中,与周围细胞和组织建立联系,在治疗先天性巨结肠方面有巨大潜力。

个体发育过程中,NCC通过迷走神经嵴进入近端胃肠道后分化为ENCC,在胚胎第4~7周沿整个胃肠道以远端定向迁移形成ENS[34]。Nishikawa等[35]从转基因小鼠中获取ENCC并将其移植到Ret-/-小鼠(先天性巨结肠动物模型)的肠壁中,发现移植的ENCC能在小鼠无神经节细胞的肠段分化成肠神经元。肠神经元的形成对ENS维持正常功能至关重要。Cooper等[36]将胎儿结肠ENCC移植到先天性巨结肠小鼠中,证明胎儿来源的ENCC能分化为适合小鼠ENS的神经元和胶质细胞,但只有53.3%的小鼠移植成功,比小鼠来源的ENCC体内移植90.3%的成功率低,推测主要原因是人样本的固有变异[37]。值得注意的是,动物模型并不能完全展现人ENS的复杂性,在ENCC用于临床治疗前还需进一步的实验和研究。Nakazawa-Tanaka等[38]不仅证明ENCC能迁移和定植到小鼠神经节受损肠道中,还发现肠道微环境影响移植后的ENCC行为。肠道微环境的失衡被视为诱发先天性巨结肠的一个重要因素[39]。干细胞治疗与改善微环境相结合的综合治疗模式可能是一个很好的方向[40]。

5""未来面临的问题和挑战

关于使用何种干细胞治疗先天性巨结肠的问题,PSC虽然展现出潜在的治疗价值,但在实际应用中仍存在挑战。首先,ESC的使用受到伦理、致瘤性及免疫排斥等诸多因素限制[41-42]。iPSC的出现规避了ESC伦理争议和排斥反应风险,但新的问题也逐渐浮现出来。获取iPSC使用的编程因子c-Myc本身是原癌基因,研究人员尝试让c-Myc消失、沉默或从细胞中剔除,但这些操作同时可降低重组效率,且被沉默的c-Myc也可能被重新激活。尽管研究人员努力提高iPSC的纯度和安全性,但仍难以完全消除其致瘤风险[43]。其次,进行干细胞移植过程中可能发生免疫排斥反应,患者将接受长期免疫抑制剂治疗,这会增加其感染和患癌风险。在干细胞治疗实现临床转化前,有必要在移植细胞的获益与长期使用免疫抑制剂的不良反应之间权衡利弊。最后,从何获取干细胞作为可靠来源、干细胞治疗使用的剂量、细胞移植存活和递送率都是需要认真考虑的问题。相信随着先天性巨结肠致病机制的深入剖析和再生医学在干细胞领域的研究,未来会有更好的干细胞来源和更安全的移植方案,为干细胞治疗先天性巨结肠带来创新性改变。

利益冲突:所有作者均声明不存在利益冲突。

[参考文献]

[1] KLEIN"M,"VARGA"I."Hirschsprung’s"disease-recent"understanding"of"embryonic"aspects,"etiopathogenesis"and"future"treatment"avenues[J]."Medicina"(Kaunas),"2020,"56(11):"611.

[2] XIAO"J,"HAO"L"W,"WANG"J,"et"al."Comprehensive"characterization"of"the"genetic"landscape"of"familial"Hirschsprung’s"disease[J]."World"J"Pediatr,"2023,"19(7):"644–651.

[3] MONTALVA"L,"CHENG"L"S,"KAPUR"R,"et"al."Hirschsprung"disease[J]."Nat"Rev"Dis"Primers,"2023,"9(1):"54.

[4] ZHANG"S,"CAI"D,"ZHANG"Y,"et"al."Comparation"of"robotic-assisted"surgery"and"laparoscopic‑assisted"surgery"in"children"with"Hirschsprung's"disease:"A"single-centered"retrospective"study[J]."BMC"Surg,"2023,"23(1):"294.

[5] LI"W,"LIN"M,"HU"H,"et"al."Surgical"management"of"Hirschsprung’s"disease:"A"comparative"study"between"conventional"laparoscopic"surgery,"transumbilical"single-"site"laparoscopic"surgery,"and"robotic"surgery[J]."Front"Surg,"2022,"9:"924850.

[6] DALEY"G"Q."Stem"cells"and"the"evolving"notion"of"cellular"identity[J]."Philos"Trans"R"Soc"Lond"B"Biol"Sci,"2015,"370(1680):"20140376.

[7] SHARKEY"K"A,"MAWE"G"M."Thenbsp;enteric"nervous"system[J]."Physiological"Reviews,"2023,"103(2):"1487–1564.

[8] MUELLER"J"L,"GOLDSTEIN"A"M."The"science"of"Hirschsprung"disease:"What"we"know"and"where"we"are"headed[J]."Semin"Pediatr"Surg,"2022,"31(2):"151157.

[9] FAN"Y,"HACKLAND"J,"BAGGIOLINI"A,"et"al."HPSC-derived"sacral"neural"crest"enables"rescue"in"a"severe"model"of"Hirschsprung’s"disease[J]."Cell"Stem"Cell,"2023,"30(3):"264–282.

[10] SCHLIEVE"C"R,"FOWLER"K"L,"THORNTON"M,"et"al."Neural"crest"cell"implantation"restores"enteric"nervous"system"function"and"alters"the"gastrointestinal"transcriptome"in"human"tissue-engineered"small"intestine[J]."Stem"Cell"Reports,"2017,"9(3):"883–896.

[11] MARCO"M,"CLAIRE"C,"AMANDA"J"B,"et"al."Enteric"nervous"system"stem"cells"derived"from"human"gut"mucosa"for"the"treatment"of"aganglionic"gut"disorders[J]."Gastroenterology,"2009,"136(7):"2214–2225.

[12] KOLIOS"G,"MOODLEY"Y."Introduction"to"stem"cells"and"regenerative"medicine[J]."Respiration,"2013,"85(1):"3–10.

[13] BACAKOVA"L,"ZARUBOVA"J,"TRAVNICKOVA"M,""""et"al."Stem"cells:"Their"source,"potency"and"use"in"regenerative"therapies"with"focus"on"adipose-derived"stem"cells"-"A"review[J]."Biotechnol"Adv,"2018,"36(4):"1111–1126.

[14] BOZDAĞ"S"C,"YÜKSEL"M"K,"DEMIRER"T."Adult"stem"cells"and"medicine[J]."Adv"Exp"Med"Biol,"2018,"1079:"17–36.

[15] CAI"J,"CHEN"H,"XIE"S,"et"al."Research"progress"of"totipotent"stem"cells[J]."Stem"Cells"Dev,"2022,"31(13-14):"335–345.

[16] HU"Y,"YANG"Y,"TAN"P,"et"al."Induction"of"mouse"totipotent"stem"cells"by"a"defined"chemical"cocktail[J]."Nature,"2023,"617(7962):"792–797.

[17] MACFARLAN"T"S,"GIFFORD"W"D,"DRISCOLL"S,""""et"al."Embryonic"stem"cell"potency"fluctuates"with"endogenous"retrovirus"activity[J]."Nature,"2012,"487(7405):"57–63.

[18] POSFAI"E,"SCHELL"J"P,"JANISZEWSKI"A,"et"al."Evaluating"totipotency"using"criteria"of"increasing"stringency[J]."Nat"Cell"Biol,"2021,"23(1):"49–60.

[19] FATTAHI"F,"STEINBECK"J"A,"KRIKS"S,"et"al."Deriving"human"ENS"lineages"for"cell"therapy"and"drug"discovery"in"Hirschsprung"disease[J]."Nature,"2016,"531(7592):"105–109.

[20] FRITH"T"J"R,"GOGOLOU"A,"HACKLAND"J"O"S,"et"al."Retinoic"acid"accelerates"the"specification"of"enteric"neural"progenitors"from"in-vitro-derived"neural"crest[J]."Stem"Cell"Reports,"2020,"15(3):"557–565.

[21] WEATHERBEE"B"A"T,"CUI"T,"ZERNICKA-GOETZ"M."Modeling"human"embryo"development"with"embryonic"and"extra-embryonic"stem"cells[J]."Dev"Biol,"2021,"474:"91–99.

[22] PEDROZA"M,"GASSALOGLU"S"I,"DIAS"N,"et"al."Self-patterning"of"human"stem"cells"into"post-implantation"lineages[J]."Nature,"2023,"622(7983):"574–583.

[23] RATAJCZAK"M"Z,"RATAJCZAK"J,"KUCIA"M."Very"small"embryonic-like"stem"cells"(VSELs)[J]."Circ"Res,"2019,"124(2):"208–210.

[24] TAKAHASHI"K,"YAMANAKA"S."Induction"of"pluripotent"stem"cells"from"mouse"embryonic"and"adult"fibroblast"cultures"by"defined"factors[J]."Cell,"2006,"126(4):"663–676.

[25] LIU"G,"DAVID"B"T,"TRAWCZYNSKI"M,"et"al."Advances"in"pluripotent"stem"cells:"History,"mechanisms,"technologies,"and"applications[J]."Stem"Cell"Rev"Rep,"2020,"16(1):"3–32.

[26] LAI"F"P,"LAU"S"T,"WONG"J"K,"et"al."Correction"of"Hirschsprung-associated"mutations"in"human"induced"pluripotent"stem"cells"via"clustered"regularly"interspaced"short"palindromic"repeats/Cas9,"restores"neural"crest"cell"function[J]."Gastroenterology,"2017,"153(1):"139–153.

[27] SCHWARTZ"S"D,"REGILLO"C"D,"LAM"B"L,"et"al."Human"embryonic"stem"cell-derived"retinal"pigment"epithelium"in"patients"with"age-related"macular"degeneration"and"Stargardt’s"macular"dystrophy:"Follow-up"of"two"open-label"phase"1/2"studies[J]."Lancet,"2015,"385(9967):"509–516.

[28] PIAO"J,"ZABIEROWSKI"S,"DUBOSE"B"N,"et"al."Preclinical"efficacy"and"safety"of"a"human"embryonic"stem"cell-derived"midbrain"dopamine"progenitor"product,"MSK-DA01[J]."Cell"Stem"Cell,"2021,"28(2):"217–229.

[29] SHIN"J"H,"RYU"C"M,"YUnbsp;H"Y,"et"al."Safety"of"human"embryonic"stem"cell-derived"mesenchymal"stem"cells"for"treating"interstitial"cystitis:"A"phase"Ⅰ"study[J]."Stem"Cells"Transl"Med,"2022,"11(10):"1010–1020.

[30] MICCI"M"A,"KAHRIG"K"M,"SIMMONS"R"S,"et"al."Neural"stem"cell"transplantation"in"the"stomach"rescues"gastric"function"in"neuronal"nitric"oxide"synthase-"deficient"mice[J]."Gastroenterology,"2005,"129(6):"1817–1824.

[31] DONG"Y"L,"LIU"W,"GAO"Y"M,"et"al."Neural"stem"cell"transplantation"rescues"rectum"function"in"the"aganglionic"rat[J]."Transplant"Proc,"2008,"40(10):"3646–3652.

[32] HOTTA"R,"RAHMAN"A,"BHAVE"S,"et"al."Transplanted"ENSCs"form"functional"connections"with"intestinal"smooth"muscle"and"restore"colonic"motility"in"nNOS-"deficient"mice[J]."Stem"Cell"Res"Ther,"2023,"14(1):"232.

[33] STAVELY"R,"BHAVE"S,"HO"W"L"N,"et"al."Enteric"mesenchymal"cells"support"the"growth"of"postnatal"enteric"neural"stem"cells[J]."Stem"Cells,"2021,"39(9):"1236–1252.

[34] ROLLO"B"N,"ZHANG"D,"STAMP"L"A,"et"al."Enteric"neural"cells"from"hirschsprung"disease"patients"form"ganglia"in"autologous"aneuronal"colon[J]."Cell"Mol"Gastroenterol"Hepatol,"2016,"2(1):"92–109.

[35] NISHIKAWA"R,"HOTTA"R,"SHIMOJIMA"N,"et"al."Migration"and"differentiation"of"transplanted"enteric"neural"crest-derived"cells"in"murine"model"of"Hirschsprung’s"disease[J]."Cytotechnology,"2015,"67(4):"661–670.

[36] COOPER"J"E,"NATARAJAN"D,"MCCANN"C"J,"et"al."In"vivo"transplantation"of"fetal"human"gut-derived"enteric"neural"crest"cells[J]."Neurogastroenterol"Motil,"2017,"29(1):"e12900.

[37] COOPER"J"E,"MCCANN"C"J,"NATARAJAN"D,"et"al."In"vivo"transplantation"of"enteric"neural"crest"cells"into"mouse"gut;"engraftment,"functional"integration"and"long-term"safety[J]."PLoS"One,"2016,"11(1):"e0147989.

[38] NAKAZAWA-TANAKA"N,"FUJIWARA"N,"MIYAHARA"K,"et"al."Increased"enteric"neural"crest"cell"differentiation"after"transplantation"into"aganglionic"mouse"gut[J]."Pediatr"Surg"Int,"2022,"39(1):"29.

[39] JI"Y,"TAM"P"K,"TANG"C"S."Roles"of"enteric"neural"stem"cell"niche"and"enteric"nervous"system"development"in"Hirschsprung"disease[J]."Int"J"Mol"Sci,"2021,"22(18):"9659.

[40] VICENTINI"F"A,"KEENAN"C"M,"WALLACE"L"E,"et"al."Intestinal"microbiota"shapes"gut"physiology"and"regulates"enteric"neurons"and"glia[J]."Microbiome,"2021,"9(1):"210.

[41] WANG"H,"GONG"P,"LI"J,"et"al."Role"of"CD133"in"human"embryonic"stem"cell"proliferation"and"teratoma"formation[J]."Stem"Cell"Res"Ther,"2020,"11(1):"208.

[42] GOLCHIN"A,"CHATZIPARASIDOU"A,"RANJBARVAN"P,""""et"al."Embryonic"stem"cells"in"clinical"trials:"Current"overview"of"developments"and"challenges[J]."Adv"Exp"Med"Biol,"2021,"1312:"19–37.

[43] YOSHIHARA"M,"OGUCHI"A,"MURAKAWA"Y."Genomic"instability"of"iPSCs"and"challenges"in"their"clinical"applications[J]."Adv"Exp"Med"Biol,"2019,"1201:"23–47.

(收稿日期:2024–09–27)

(修回日期:2024–11–20)

猜你喜欢
移植干细胞
干细胞:“小细胞”造就“大健康”
今日农业(2022年13期)2022-09-15 01:21:20
健康成人尿源性干细胞的分离、培养与鉴定
造血干细胞移植与捐献
干细胞产业的春天来了?
基于FreeRTOS系统和LwIP协议栈的网络通讯
西方音乐元素在二胡演奏中的移植
心脏自体干细胞移植治疗心肌梗死新进展
科技视界(2016年24期)2016-10-11 19:55:02
“移植”瘦人粪便能减肥?
环球时报(2016-09-27)2016-09-27 08:30:57
基于Cortex—M4内核的μCOS—Ⅱ移植
科技视界(2016年9期)2016-04-26 10:19:53
干细胞治疗有待规范
中国卫生(2014年2期)2014-11-12 13:00:14