正畸矫治器对口腔微生物影响的研究进展

2025-02-16 00:00:00李博晟李永明
中国美容医学 2025年2期
关键词:弓丝托槽菌斑

[摘要]口腔微生物群落结构的稳定是保持口腔健康的基础。正畸矫治器改变了口腔微环境,可导致菌群失调,进而引起脱矿、龋齿、牙龈炎甚至牙周炎等牙体、牙周病损。相关研究结果表明,正畸治疗过程中,口腔微生物群落变化的总体特征为多样性增加、机会致病菌丰度上升,具体表现可受到矫治器种类、观测位点、结扎方式、弓丝材质等因素影响。深入了解正畸过程中微生物的动态变化及其与口腔病损的内在联系将是未来的研究热点,这对降低正畸并发症风险有重要的临床指导意义,亦可为口腔疾病防治提供新的思路。本文就正畸矫治器对口腔微生物影响的研究进展作一综述。

[关键词]口腔微生物;正畸矫治器;菌群失调;高通量测序;微生物多样性;正畸托槽;隐形矫治器;口腔疾病

[中图分类号]R783.5" " [文献标志码]A" " [文章编号]1008-6455(2025)02-0171-05

Research Progress of the Impact Orthodontic Appliance on Oral Microbiota

LI Bosheng, LI Yongming

( Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China )

Abstract:" Stability of oral microbiota is the basis of oral health. Orthodontic appliances may have an impact on oral microenvironment, which can lead to dysbacteriosis, and even induce endodontic or periodontal lesions including enamel decalcification, caries, gingivitis or periodontitis. This paper reviews the research progress of the impact orthodontic appliance on oral microbiota. Studies have shown the alteration of oral microbiota during orthodontic treatment is charactered by higer diversity and increased abundence of opportunistic pathogens. The specific performance varied from appliance types, observation site, ligation method and arch wire material. In-depth understanding dynamic of microbiota during treatment procedure and its mechanic relationship with oral lesions will be the focus of research in future. It is of great significance in reducing the risk of orthodontic complications, and also provides a new idea for the prevention and treatment of oral diseases.

Key words: oral microbiota; orthodontic appliance; dysbacteriosis; high-throughput sequencing technology; microbial diversity; orthodontic Brackets; clear aligners; oral diseases

正畸治疗过程中常见的并发症包括白斑、龋齿、牙龈炎、牙周炎、口臭等,它们的出现与口腔微生物群落组成的改变、牙周微生态平衡的打破密切相关。健康的人体口腔中存在700余种微生物,其中细菌占了绝大部分[1]。正常情况下,微生物定植于口腔软硬组织表面,形成生物膜,它们彼此之间存在广泛的协同与拮抗作用,以保持种类与数量的相对稳定,达到一种动态平衡[2],这种平衡是保持口腔健康的基础。既往观点认为,正畸矫治器,特别是传统的固定矫治器,改变了牙齿的解剖外形,为细菌提供了更丰富的黏附位点,有利于牙菌斑形成、滞留、累积,进而引起多种牙体、牙周病损。

1" 固定矫治器引起患者口腔微生物改变

1.1 传统唇侧固定矫治器:根据菌斑的位置不同,以龈缘为界可分为龈上菌斑及龈下菌斑。龈上菌群与白斑、龋病等牙体疾病关系密切。传统的固定正畸矫治器可引起龈上菌斑的微生物群落结构改变,并以专性厌氧菌的相对丰度增加为特征[3];Shukla C[4]发现相对于基线水平,矫治3个月后菌斑样本中变形链球菌与念珠菌的定植显著增加,提示龋病与黏膜病风险。正常龈下菌群以革兰氏阳性球菌为主,矫治器粘接后,龈下革兰氏阴性厌氧菌增加,成为牙周疾病的风险因素[5]。近年有报道指出,虽然龈下菌群多样性和核心物种保持稳定,但中间普氏菌、具核梭杆菌等牙周致病菌丰度上升[6]。除此之外,牙龈卟啉单胞菌、福赛坦菌、伴放线放线杆菌都是正畸患者龈沟中常检出的牙周致病菌。

除附着于牙体硬组织表面的菌斑外,固定矫治器对唾液微生物亦会产生明显影响。有研究显示与健康人群相比,正畸患者的唾液菌群呈现较高的微生物多样性,假单胞菌属、合成孢菌属、伯克霍尔德菌属和细小细孔菌属的丰度显著增加[7]。除此之外,在治疗开始后的6个月内,白色念珠菌、变形链球菌和乳酸杆菌的增加亦可见报道等[8-9]。

虽然大量的研究都证实固定矫治器的应用会引起致病菌数量增加,但这种趋势似乎不是持续不变的。Guo R[10]利用高通量测序技术对10例牙周健康正畸患者的唾液菌群及牙周指数进行了多时间节点的观察,结果显示在治疗开始的1个月内,唾液微生物的α及β多样性显著上升,3个月时恢复至治疗前水平,临床指数变化趋势与微生物多样性基本一致,核心物种和牙周致病菌的相对丰度则保持稳定。Zheng Y等[11]研究了粘接后6个月内患者口腔内白色念珠菌数量变化,结果显示2个月是微生物水平的高峰,3~6个月持续回落,但仍高于治疗前水平。这种“转折”的出现有可能是因为治疗开始数月后错牙合畸形减轻,牙列拥挤等问题得到改善,唾液自洁作用增强,患者维护口腔卫生的难度降低,牙周微环境改善,口腔微生物群落结构得以恢复。

当矫治器拆除后,菌群会“自我修复”,但所需时间、是否能完全恢复至治疗前水平尚无定论。Pan S[12]的研究结果表明,在拆除托槽3个月后,龈下菌斑微生物组成与矫治前相比有一定相似性,但仍多有不同。Ireland AJ等[13]也指出,在矫治结束1年后的菌斑样本中,牙龈卟啉单胞菌、福赛坦氏菌、缠结优杆菌等牙周致病菌水平仍高于矫治前。Ghijselings E等[14]发现矫治器拆除2年后虽然龈上菌斑中需氧菌/厌氧菌的比值与矫治前没有差异,但龈下菌斑中厌氧菌水平仍明显较高。由此可见,虽然现阶段仍缺乏更多的证据来充分描述摘除矫治器后口腔微生物的变化过程,但可以合理推测这种影响或许要比我们想象得更长远。

1.2 自锁托槽:对于传统托槽的研究结论也基本适用于自锁托槽,但不同的托槽设计是否会影响致病菌的水平则存在争议。Pejda S等[15]认为两者无显著差异,虽然与自锁托槽相比,使用传统托槽的患者龈下菌斑中伴放线放线杆菌的检出率较高,但其他常见致病微生物水平及临床指标基本一致。对此,Bergamo AZN等[16-17]报道了不同观点,他观察到In-Ovation®R自锁托槽在与牙周病密切相关的“红色复合体”“橙色复合体”以及多种龋齿相关微生物的检出率上要高于SmartClipTM托槽及传统托槽。总体而言,对于这一问题的研究报道结论不一,目前尚缺乏强有力的证据证实托槽设计对于口腔微生物的影响。

1.3 舌侧固定矫治器:受限于临床应用范围,既往对于舌侧矫治器的研究相对较少,近年来仅有Gujar AN等[18]利用棋盘DNA杂交技术评估了使用不同正畸矫治器时唾液中橙色及红色复合体的水平变化,与传统粘接在唇/颊侧的固定矫治器相比,使用舌侧矫治器虽然会导致梭杆菌属和普氏菌属的丰度轻度增加,但无统计学意义。我们或许可以猜测,由于牙齿舌面的解剖形态较唇颊面复杂,日常清洁难以彻底进行,因此,托槽粘接给口腔微生物带来的不利影响更加明显,但就现阶段而言缺乏相关的证据支持。

1.4 结扎圈与正畸弓丝:橡胶结扎圈是临床常用的正畸配件,但弹性材料的使用可能是导致菌斑累积的风险因素[19]。在正畸治疗期间,弹性结扎圈上变异链球菌、乳酸杆菌定植显著增加[20],这两种微生物被认为与釉质脱矿、龋齿密切相关;白色念珠菌亦可检出[21]。更有学者深入比较了不同种类结扎圈对于微生物定植的影响,并指出彩色结扎圈会提高葡萄球菌、乳酸杆菌的定植水平[22],加入纳米银颗粒的橡皮链圈则可以减少细菌生物膜的形成[23]。Shirozaki MU等[24]则认为连接方式不会对口腔微生物造成影响,对于不同的结扎方式,扫描电镜下均可观察到丰富的生物膜污染,各组间变形链球菌的水平无显著差异。

除结扎圈外,表面微结构粗糙的弓丝可能更有利于细菌的黏附。Abraham KS等[25]比较了镍钛弓丝和铜-镍钛弓丝,结果显示口内放置4周后,铜-镍钛弓丝上有更多的变异链球菌黏附,这可能是因为含铜弓丝表面更为粗糙,有更高的表面自由能。对于美学涂层镍钛弓丝的研究也提示,口内放置4~8周后,弓丝表面粗糙度的增加是引起变异链球菌黏附增多的重要原因[26],但并不是所有的研究都得出相同结论。Lima KCC等[27]认为虽然与无涂层的不锈钢丝相比,镍钛弓丝拥有更高的细菌黏附水平,但该结果与弓丝表面粗糙度没有关联。Hepyukselen BG等[28]在比较了超弹镍钛、铜-镍钛、钛-钼合金三种弓丝后也发现,不同的材料不会对拭子样本微生物数量及临床牙周参数造成显著影响。总体而言,虽然现阶段还难以形成广泛的共识,但材料的选择的确是应该纳入考量的因素。

2" 透明矫治器对患者口腔微生物的影响

与传统的矫治器相比,透明矫治器可摘戴、不会改变牙面解剖形态是其一大特点,大大降低了患者清洁口腔的难度,减少微生物定植。但另一方面,过长的佩戴时间(每日22 h以上)[29]对牙齿唇颊面的大面积覆盖又可阻碍唾液的自洁作用,形成利于菌斑累积的局部厌氧微环境。有证据显示,当连续佩戴12 h以上时,隐形矫治器内侧面可检出丰富的龋病相关致病菌[30]。因此,透明矫治器在菌斑控制上的表现也引起了众多关注。在近期的一项研究中,Mummolo S等[31]观察了戴用不同矫治器的患者治疗开始6个月后的唾液微生物,结果显示透明矫治器组仅有13.3%的样本中变形链球菌计数达到了致龋预警值(CFU>10-5),这一比例在固定矫治器组中高达40%,对乳酸杆菌的观察也得到了相似结果。在另一项研究中,固定矫治器组在治疗开始3/6个月后可观察到口腔内微生物总量上升以及具核梭杆菌、弯曲结肠杆菌计数增加,透明矫治器组相较矫治前则没有明显改变[32]。Guo RZ等[33]利用16S RNA测序技术对隐形矫治患者龈下菌斑进行检测,结果显示虽然群落多样性稍有下降,但多种牙周病原体水平无明显改变。Zhao R等[34]对于唾液菌群的研究也得到了相似结论,在治疗的前6个月中,菌群基本保持稳定。总体而言透明矫治器在防止微生物过度增殖、菌斑累积上有更优异的表现。学者们还对其他“可移动”的矫治器具进行了研究,如吸塑保持器、可摘戴的间隙保持器等[35-36],结果大同小异。可摘戴的器具普遍比固定器具对口腔微生物的影响更小,这可能是由于它们不会为致病菌提供额外的利于定植的位点,同时患者能够执行更完善的口腔卫生维护措施。

3" 口腔微生物与正畸中的牙周问题

正畸过程中由于菌斑滞留,牙周问题颇为常见,可表现为牙龈红肿、增生、探诊出血、牙周袋加深等。回顾前人的研究我们不难发现,革兰氏阳性菌和某些革兰氏阴性菌,如变形链球菌、牙龈卟啉单胞菌、中间普氏菌、福赛坦氏菌、乳酸杆菌等的增加是口腔微生物的共性变化,而这些细菌被认为是与多种牙体、牙周病损密切相关的“可疑致病菌”。一项Meta分析重点观察了固定矫治过程中龈下菌斑“红色复合体”的数量变化,结果显示治疗开始后6个月,牙龈卟啉单胞菌、中间普氏菌、福赛坦氏菌及放线菌的水平均显著上升[37]。正畸过程中口腔菌群的失调是牙周问题的重要风险因素,使用对于牙周微生物影响较小的矫治器患者通常也有更好的牙周健康状况[38-39]。但值得注意的是,对于牙周问题而言,微生物并非唯一的致病因素,吸烟、个体易感性、系统性疾病都会影响牙周疾病的发生发展,事实上也有不少学者得出了不同结论。Wang Q等[40]对正畸患者的唾液样本进行了基因组测序,结果显示使用不同的矫治器并不会引起微生物群落的结构变化。另一项研究显示,虽然在10~12个月的治疗过程中,患者口内可见菌斑堆积,但影像学手段未观察到不可逆的牙周损害,牙周临床指标也未出现明显改变[41]。由此可见,微生物虽然是牙周问题的始动因子,但两者之间并不存在绝对的因果关系,其间机制还需要进一步的深入研究。

4" 正畸过程中的菌斑控制

如何减轻正畸矫治器对微生物的不利影响一直是研究的热点。金属离子或氧化物常常作为抗菌剂被添加于粘接剂中,有证据显示1%的氧化银纳米颗粒可显著抑制变形链球菌的增殖,但其抑菌作用在30 d内快速衰减[42]。另有学者将抗蛋白制剂、抗菌性季铵盐单体和再矿化纳米颗粒添加入树脂改良型玻璃离子中,形成的多功能粘接剂可释氟、抗菌、促进釉质再矿化,有效减轻菌斑堆积导致的白斑问题[43]。Xie Y等[44]提出一种季铵盐修饰的金纳米团簇涂层,可以赋予矫治器长达3个月的抑菌性能,且拥有良好的生物相容性。在临床上,除传统的卫生宣教、定期洁治、牙周随访外,基于光激活原理的光动力抗菌疗法能有效减少菌斑总量及降低菌斑生物膜的产酸能力[45],以罗伊氏乳杆菌为代表的口服益生菌制剂能改善牙周临床指标、减轻局部炎症,都可作为正畸患者口腔卫生管理的辅助手段[46-47]。除此之外,患者的主观能动性也至关重要。有证据显示,“提醒疗法”如定时给患者发送保持口腔卫生的短信、推送等可增加患者依从性[48],配合便于操作的菌斑显色剂可显著提高患者自我清洁效率[49]。在严格的卫生指导和患者良好的配合下,使用电动牙刷或普通牙刷均可达到良好的清洁效果[50]。

5" 小结和展望

虽然矫治器对口腔微生物的影响已基本得到证实,但现阶段的研究仍存在一些局限性。一方面口腔是一个开放的环境,微生物群落结构会受到多种环境因素的影响,饮食、气候、海拔、饮水含氟量、吸烟习惯、代谢及免疫系统疾病等环境因子对微生物的影响甚至要大于遗传因素[51]。有研究表明,虽然高丰度的“核心微生物群”在个体间具有相对一致性,但低丰度的稀有微生物在个体间的差异十分显著,且即使是在健康的个体中,微生物群落的结构也并非一成不变,菌群会随时间产生一定范围的“漂移”,口腔微生态的稳定是相对而动态的[52]。再考虑到口腔内的各个部位也具有不同的微生物群落特征,舌侧通常比唇/颊侧有更丰富的微生物定植[53]。因此,如何在研究设计中规避无关因素的影响是十分值得考虑的问题。另一方面限于检测手段,以往研究通常仅聚焦于数种微生物,且正畸过程长达2年左右,因此,很难完整、全面地观察口腔微生物的变化。幸运的是,随着近年来测序技术的发展以及多组学联合分析手段的进步,越来越多的证据帮助我们客观深入地了解矫治期间口腔微生物的动态改变,同时也为防治正畸过程中的口腔问题提供新的思路。

总而言之,由于口腔微生物群落结构的改变,正畸患者通常需要面对更高的龋齿及牙周风险,因此,良好的卫生指导以及坚持执行科学、有效的口腔清洁程序对他们来说十分必要。

[参考文献]

[1]Verma D, Garg P K, Dubey A K. Insights into the human oral microbiome[J]. Arch Microbiol, 2018,200(4):525-540.

[2]Perkowski K, Baltaza W, Conn D B, et al. Examination of oral biofilm microbiota in patients using fixed orthodontic appliances in order to prevent risk factors for health complications[J]. Ann Agric Environ Med, 2019,26(2):231-235.

[3]Kado I, Hisatsune J, Tsuruda K, et al. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients[J]. Sci Rep, 2020,10(1):21989.

[4]Shukla C, Maurya R, Singh V, et al. Evaluation of role of fixed orthodontics in changing oral ecological flora of opportunistic microbes in children and adolescent[J]. J Indian Soc Pedod Prev Dent, 2017,35(1):34-40.

[5]Lucchese A, Bondemark L, Marcolina M, et al. Changes in oral microbiota due to orthodontic appliances: A systematic review[J]. J Oral Microbiol, 2018,10(1):1476645.

[6]Guo R Z, Liu H, Li X B, et al. Subgingival microbial changes during the first 3 months of fixed appliance treatment in female adult patients[J]. Curr Microbiol, 2019,76(2):213-221.

[7]Sun F, Ahmed A, Wang L, et al. Comparison of oral microbiota in orthodontic patients and healthy individuals[J]. Microb Pathog, 2018,123:473-477.

[8]Arab S, Malekshah S N, Mehrizi E A, et al. Effect of fixed orthodontic treatment on salivary flow, pH and microbial count[J]. J Dent (Tehran), 2016,13(1):18-22.

[9]Maret D, Marchal-Sixou C, Vergnes J N, et al. Effect of fixed orthodontic appliances on salivary microbial parameters at 6 months: a controlled observational study[J]. J Appl Oral Sci, 2014,22(1):38-43.

[10]Guo R, Zheng Y, Zhang L, et al. Salivary microbiome and periodontal status of patients with periodontitis during the initial stage of orthodontic treatment[J]. Am J Orthod Dentofacial Orthop, 2021,159(5):644-652.

[11]Zheng Y, Li Z, He X. Influence of fixed orthodontic appliances on the change in oral candida strains among adolescents[J]. J Dent Sci, 2016,11(1):17-22.

[12]Pan S, Liu Y, Zhang L, et al. Profiling of subgingival plaque biofilm microbiota in adolescents after completion of orthodontic therapy[J]. PLoS One, 2017,12(2):e0171550.

[13]Ireland A J, Soro V, Sprague S V, et al. The effects of different orthodontic appliances upon microbial communities[J]. Orthod Craniofac Res, 2014,17(2):115-23.

[14]Ghijselings E, Coucke W, Verdonck A, et al. Long-term changes in microbiology and clinical periodontal variables after completion of fixed orthodontic appliances[J]. Orthod Craniofac Res, 2014,17(1):49-59.

[15]Pejda S, Varga M L, Milosevic S A, et al. Clinical and microbiological parameters in patients with self-ligating and conventional brackets during early phase of orthodontic treatment[J]. Angle Orthod, 2013,83(1):133-9.

[16]Bergamo A Z N, Filho P N, Andrucioli M C D, et al. Microbial complexes levels in conventional and self-ligating brackets[J]. Clin Oral Investig, 2017,21(4):1037-1046.

[17]Bergamo A Z N, Matsumoto M A K, Nascimento C, et al. Microbial species associated with dental caries fund in saliva and in situ after use of self-ligating and conventional brackets[J]. J Appl Oral Sci, 2019,27:e20180426.

[18]Gujar A N, Alhazmi A, Raj A T, et al. Microbial profile in different orthodontic appliances by checkerboard DNA-DNA hybridization: An in-vivo study[J]. Am J Orthod Dentofacial Orthop, 2020,157(1):49-58.

[19]Sawhney R, Sharma S, Sharma K. Microbial colonization on elastomeric ligatures during orthodontic therapeutics: An overview[J]. Turk J Orthod, 2018,31(1):21-25.

[20]Manavi K, Naik V, Bhatt K. Microbial colonization on elastomeric modules during orthodontic treatment: an in vivo study[J]. Ind J Orthod Dentofac Res, 2016,2:43-49.

[21]Grzegocka K, Krzyciak P, Hille-Padalis A, et al. Candida prevalence and oral hygiene due to orthodontic therapy with conventional brackets[J]. BMC Oral Health, 2020,20(1):277.

[22]Ravish S, Kavita S, Rajesh S. Evidence of variable bacterial colonization on coloured elastomeric ligatures during orthodontic treatment: An intermodular comparative study[J]. J Clin Exp Dent, 2018,10(3):e271-e278.

[23]Hernandez-Gomora A E, Lara-Carillo E, Robles-Navarro J B, et al. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: Evaluation of mechanical and antibacterial properties[J]. Molecules, 2017,22:1407.

[24]Shirozaki M U, Ferreira J T L, Küchler E C, et al. Quantification of streptococcus mutans in different types of ligature wires and elastomeric chains[J]. Braz Dent J, 2017,28(4):498-503.

[25]Abraham K S, Jagdish N, Kailasam V, et al. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study[J]. Angle Orthod, 2017,87(3):448-454.

[26]Taha M, El-Fallal A, Degla H. In vitro and in vivo biofilm adhesion to esthetic coated arch wires and its correlation with surface roughness[J]. Angle Orthod, 2016,86(2):285-291.

[27]Lima K C C, Paschoal M A B, Gurgel J A, et al. Comparative analysis of microorganism adhesion on coated, partially coated, and uncoated orthodontic archwires: A prospective clinical study[J]. Am J Orthod Dentofacial Orthop, 2019,156(5):611-616.

[28]Hepyukselen B G, Cesur M G. Comparison of the microbial flora from different orthodontic archwires using a cultivation method and PCR: A prospective study[J]. Orthod Craniofac Res, 2019,22(4):354-360.

[29]Papadimitriou A, Mousoulea S, Gkantidis N, et al. Clinical effectiveness of invisalign orthodontic treatment: A systematic review[J]. Prog Orthod, 2018,19(1):37.

[30]Yan D, Liu Y, Che X, et al. Changes in the microbiome of the inner surface of clear aligners after different usage periods[J]. Curr Microbiol, 2021,78(2):566-575.

[31]Mummolo S, Tieri M, Nota A, et al. Salivary concentrations of streptococcus mutans and lactobacilli during an orthodontic treatment. An observational study comparing fixed and removable orthodontic appliances[J]. Clin Exp Dent Res, 2020,6(2):181-187.

[32]Lombardo L, Palone M, Scapoli L, et al. Short-term variation in the subgingival microbiota of two groups of patients treated with clear aligners and vestibular fixed appliances: a prospective study[J]. Orthod Craniofac Res, 2021,24(2):251-260.

[33]Guo R Z, Zheng Y F, Liu H, et al. Profiling of subgingival plaque biofilm microbiota in female adult patients with clear aligners: A three-month prospective study[J]. Peer J, 2018,6:e4207.

[34]Zhao R, Huang R H, Long H, et al. The dynamics of the oral microbiome and oral health among patients receiving clear aligner orthodontic treatment[J]. Oral Dis, 2020,26(2):473-483.

[35]Al-Lehaibi W K, Al-Makhzomi K A, Sh H, et al. Physiological and immunological changes associated with oral microbiota when using a thermoplastic retainer[J]. Molecules, 2021,26(7):1948.

[36]Arikan V, Kizilci E, Ozalp N, et al. Effects of fixed and removable space maintainers on plaque accumulation, periodontal health, candidal and enterococcus faecalis carriage[J]. Med Princ Pract, 2015,24(4):311-317.

[37]Guo R Z, Lin Y F, Zheng Y F, et al. The microbial changes in subgingival plaques of orthodontic patients: A systematic review and meta-analysis of clinical trials[J]. BMC Oral Health, 2017,17(1):90.

[38]Lu H L, Tang H F, Zhou T, et al. Assessment of the periodontal health status in patients undergoing orthodontic treatment with fixed appliances and invisalign system: A meta-analysis[J]. Medicine (Baltimore), 2018,97(13):e0248.

[39]Shokeen B, Viloria E, Duong E, et al. The impact of fixed orthodontic appliances and clear aligners on the oral microbiome and the association with clinical parameters: A longitudinal comparative study[J]. Am J Orthod Dentofacial Orthop, 2022,161(5):e475-e485.

[40]Wang Q, Ma J B, Wang B, et al. Alterations of the oral microbiome in patients treated with the invisalign system or with fixed appliances[J]. Am J Orthod Dentofacial Orthop, 2019,156(5):633-640.

[41]Lemos M M, Cattaneo P M, Melsen B, et al. Impact of treatment with full-fixed orthodontic appliances on the periodontium and the composition of the subgingival microbiota[J]. J Int Acad Periodontol, 2020,22(3):174-181.

[42]Yassaei S, Nasr A, Zandi H, et al. Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times[J]. Dental Press J Orthod, 2020,25(2):52-60.

[43]马雁崧,张宁,白玉兴,等.多功能正畸粘接剂预防釉质脱矿的体外研究[J].北京口腔医学,2019,27(6):7.

[44]Xie Y, Zhang M, Zhang W, et al. Gold nanoclusters-coated orthodontic devices can Inhibit the Formation of Streptococcus Mutans Biofilm[J]. ACS Biomater Sci Eng, 2020,6(2):1239-1246.

[45]Olek M, Machorowska-Pieniążek A, Stós W, et al. Photodynamic therapy in orthodontics: A literature review[J]. Pharmaceutics, 2021,13(5):720.

[46]Agossa K, Dubar M, Lemaire G, et al. Effect of lactobacillus reuteri on gingival inflammation and composition of the oral microbiota in patients undergoing treatment with fixed orthodontic appliances: Study protocol of a randomized control trial[J]. Pathogens, 2022,11(2):112.

[47]Seidel C L, Gerlach R G, Weider M, et al. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB Trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial[J]. BMC Oral Health, 2022,22(1):148.

[48]Lima I F P, Vieira W A, Bernardino Í M, et al. Influence of reminder therapy for controlling bacterial plaque in patients undergoing orthodontic treatment: a systematic review and meta-analysis[J]. Angle Orthod, 2018,88(4):483-493.

[49]Oliveira L M, Pazinatto J, Zanatta F B. Are oral hygiene instructions with aid of plaque-­disclosing methods effective in improving self-­performed dental plaque control? A systematic review of randomized controlled trials[J]. Int J Dent Hyg, 2021,19(3):239-254.

[50]Mylonopoulou I M, Pepelassi E, Madianos P, et al. A randomized, 3-month, parallel-group clinical trial to compare the efficacy of electric 3-dimensional toothbrushes vs manual toothbrushes in maintaining oral health in patients with fixed orthodontic appliances[J]. Am J Orthod Dentofacial Orthop, 2021,160(5):648-658.

[51]唐灿,刘诗雨,程磊.口腔微生物群落结构的影响因素[J].口腔疾病防治,2020,28(6):390-393.

[52]Hall M W, Singh N, Ng K F, et al. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity[J]. NPJ Biofilms Microbiomes, 2017,3:2.

[53]Chen I, Chung J, Vella R, et al. Alterations in subgingival microbiota during full-fixed appliance orthodontic treatment-a prospective study[J]. Orthod Craniofac Res, 2022,25(2):260-268.

[收稿日期]2023-06-16

本文引用格式:李博晟,李永明.正畸矫治器对口腔微生物影响的研究进展[J].中国美容医学,2025,34(2):171-175.

猜你喜欢
弓丝托槽菌斑
正畸弓丝与托槽间摩擦力建模及试验研究
摩擦学学报(2022年3期)2022-07-08 08:05:30
大学生牙龈炎龈上菌斑的微生物群落
托槽类型对前磨牙拔除病例前牙转矩控制的比较
一种新型含稳定亚锡-氟化钠牙膏的菌斑渗透率和脂多糖中和效率的临床评价
《正畸舌侧矫治技术蘑菇型弓丝技术与舌侧托槽》
缺血性脑卒中患者龈下菌斑中牙周致病菌检测
儿童颌骨骨折托槽牵引临床疗效的评价
不同种类初始弓丝对正畸治疗影响的研究进展
正畸用热激活与超弹镍钛弓丝力学性能比较研究
医疗装备(2015年1期)2015-01-12 07:51:38
牙周洁治结合菌斑显示剂监控对正畸患者治疗效果的影响