[摘要]"目的"探讨糖尿病黄斑水肿(diabetic"macular"edema,DME)患者抗血管内皮生长因子(vascular"endothelial"growth"factor,VEGF)治疗后黄斑区微循环和房水细胞因子表达的变化,并分析其与抗VEGF疗效的关系。方法"选取2021年10月至2023年8月于南昌市第一医院就诊的DME患者62例(91眼),均行玻璃体腔注射康柏西普治疗。根据黄斑中心厚度(central"macular"thickness,CMT)的降幅将其分为疗效显著组(CMT降幅≥100μm,59眼)和非疗效显著组(CMT降幅lt;100μm或增加,32眼)。分析抗VEGF治疗后CMT、黄斑浅层毛细血管丛(superficial"capillary"plexus,SCP)血管密度(vessel"density,VD)、中心凹无血管区(fovea"avascular"area,FAZ)、VEGF、白细胞介素(interleuki,IL)-6、IL-8、IL-10的变化。采用受试者操作特征曲线(receiver"operating"characteristic"curve,ROC曲线)评估各指标的疗效预测价值。结果"治疗前,疗效显著组患眼房水的VEGF、IL-10均显著高于非疗效显著组,IL-8水平显著低于非疗效显著组(Plt;0.05);治疗后,两组患眼房水的VEGF、IL-6、IL-8、IL-10均显著低于本组治疗前(Plt;0.05),疗效显著组患眼房水的VEGF、IL-6、IL-8均显著低于非疗效显著组,IL-10水平显著高于非疗效显著组(Plt;0.05);抗VEGF治疗前后,两组患眼的FAZ面积和SCP-VD均无显著变化(Pgt;0.05)。相关性分析显示,基线房水VEGF(r=0.571,Plt;0.001)、IL-10(r=0.382,P=0.008)与CMT降幅呈正相关;IL-8与CMT降幅呈负相关性(r=–0.689,Plt;0.001);IL-6、FAZ面积、SCP-VD与CMT降幅无相关性(Pgt;0.05);细胞因子水平与FAZ面积和SCP-VD无相关性(Pgt;0.05)。ROC曲线结果显示,基线房水IL-8、VEGF和IL-10预测抗VEGF疗效的曲线下面积分别为0.825、0.813和0.676。结论"DME患者的基线房水VEGF、IL-8、IL-10水平与抗VEGF疗效相关,且能够预测抗VEGF疗效。
[关键词]"糖尿病黄斑水肿;房水细胞因子;黄斑区微循环;黄斑中心厚度
[中图分类号]"R774.1""""""[文献标识码]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.31.005
Relationship"between"macular"microcirculation,"cytokines"and"anti-VEGF"efficacy"in"DME"patients
JIN"Yu1,"LIU"Miao1,"YUAN"Fangxiu1,"WANGnbsp;Ling1,"ZENG"Qiongjuan2,"ZHU"Yuzhen1,"TU"Jiaojiao1,"WANG"jun3
1.Department"of"Ophthalmology,"the"First"Hospital"of"Nanchang,"Nanchang"330008,"Jiangxi,"China;"2.Department"of"Clinical"Nursing,"Medical"College"of"Nanchang"Institute"of"Technology,"Nanchang"330044,"Jiangxi,"China;"3.Department"of"Science"and"Education,"the"First"Hospital"of"Nanchang,"Nanchang"330008,"Jiangxi,"China
[Abstract]"Objective"To"investigate"the"changes"of"macular"microcirculation"and"aqueous"humor"cytokine"expression"in"patients"with"diabetic"macular"edema"(DME)"after"anti-vascular"endothelial"growth"factor"(VEGF)"treatment,"and"analyze"the"relationship"with"efficacy."Methods"A"total"of"62"patients"(91"eyes)"with"DME"who"were"treated"in"the"First"Hospital"of"Nanchang"from"October"2021"to"August"2023"were"selected"and"treated"with"intravitreal"injection"of"conbercept."According"to"the"reduction"of"central"macular"thickness"(CMT),"they"were"divided"into"efficacy"significant"group"(CMT"reduction"≥100μm,"59"eyes)"and"non-efficacy"significant"group"(CMT"reductionlt;100μm"or"increase,"32"eyes)."The"changes"of"CMT,"vessel"density"(VD)"of"superficial"capillary"plexus"(SCP),"fovea"avascular"area"(FAZ),"VEGF,"interleuki"(IL)"-6,"IL-8,"and"IL-10"after"anti-VEGF"treatment"were"analyzed."Receiver"operating"characteristic"(ROC)"curve"was"used"to"evaluate"the"predictive"value"of"each"index."Results"Before"treatment,"the"levels"of"VEGF"and"IL-10"in"aqueous"humor"in"efficacy"significant"group"were"significantly"higher"than"those"in"non-efficacy"significant"group,"and"the"level"of"IL-8"was"significantly"lower"than"that"in"non-efficacy"significant"group"(Plt;0.05)."After"treatment,"levels"of"VEGF,"IL-6,"IL-8"and"IL-10"in"aqueous"humor"in"both"groups"were"significantly"lower"than"before"treatment"(Plt;0.05)."The"levels"of"VEGF,"IL-6"and"IL-8"in"aqueous"humor"in"efficacy"significant"group"were"significantly"lower"than"those"in"non-efficacy"significant"group,"and"the"level"of"IL-10"was"significantly"higher"than"that"in"non-efficacy"significant"group"(Plt;0.05)."Before"and"after"anti-VEGF"treatment,"there"were"no"significant"changes"in"FAZ"area"and"SCP-VD"in"both"groups"(Pgt;0.05)."Correlation"analysis"showed"that"VEGF"(r=0.571,"Plt;0.001)"and"IL-10"(r=0.382,"P=0.008)"in"aqueous"humor"at"baseline"were"positively"correlated"with"CMT"reduction,"IL-8"was"negatively"correlated"with"CMT"reduction"(r=–0.689,"Plt;0.001)."IL-6,"FAZ"area"and"SCP-VD"were"not"correlated"with"CMT"reduction"(Pgt;0.05)."Cytokine"levels"were"not"correlated"with"FAZ"area"and"SCP-VD"(Pgt;0.05)."ROC"curve"results"showed"that"area"under"the"curve"of"IL-8,"VEGF"and"IL-10"at"baseline"predicting"anti-VEGF"efficacy"were"0.825,"0.813"and"0.676,"respectively."Conclusion"The"levels"of"VEGF,"IL-8,"and"IL-10"in"aqueous"humor"at"baseline"in"DME"patients"were"correlated"with"anti-VEGF"efficacy"and"could"predict"the"efficacy"of"anti-VEGF.
[Key"words]"Diabetic"macular"edema;"Aqueous"humor"cytokines;"Macular"microcirculation;"Central"macular"thickness
糖尿病视网膜病变(diabetic"retinopathy,DR)是糖尿病最常见的并发症,由视网膜微血管和视网膜神经结构损伤所致[1]。DR已成为全球致盲尤其是工作年龄人群视力障碍的主要原因之一,而糖尿病黄斑水肿(diabetic"macular"edema,DME)是影响糖尿病患者视力最重要的因素[2-3]。抗血管内皮生长因子(vascular"endothelial"growth"factor,VEGF)是目前治疗DME最有效的方法,但仍有少部分患者治疗效果不佳,表明除VEGF外,可能存在其他因素参与DME进展[4]。研究发现炎症因子在DME进展中发挥作用[5-6]。因此,探究DME患者房水炎症因子水平及其与抗VEGF疗效的关系具有重要的临床价值。光学相干断层扫描血管成像(optical"coherence"tomography"angiography,OCTA)可量化视网膜毛细血管,具有无创、检查迅速及无并发症等优点[7]。与健康人群相比,DME患者的黄斑中心凹无血管区(fovea"avascular"area,FAZ)面积更大,且视力丧失可能与FAZ扩大有关[8]。然而,DME患者玻璃体腔抗VEGF治疗后的黄斑血流变化仍不明确[9-11]。本研究旨在观察DME患者行玻璃体腔注射康柏西普治疗后房水细胞因子水平、FAZ面积、黄斑浅层毛细血管丛(superficial"capillary"plexus,SCP)血流密度(vessel"density,VD)和黄斑中心厚度(central"macular"thickness,CMT)的变化,并分析房水细胞因子与以上黄斑结构的关系。
1""资料与方法
1.1""研究对象
选取2021年10月至2023年8月于南昌市第一医院就诊的DME患者62例(91眼)。纳入标准:①2型糖尿病患者;②依据2002年糖尿病国际临床分类法确诊为DR非增殖期[12];③DME符合美国眼科协会诊断标准,即OCT检查显示CMTgt;315μm[13];④糖化血红蛋白、空腹血糖、餐后2h血糖分别低于10%、7.0mmol/L、10mmol/L[14]。排除标准:①近6个月行眼底治疗,如抗VEGF治疗、视网膜激光光凝及玻璃体切除术;②病理性近视、老年性黄斑病变和青光眼患者;③合并严重的全身疾病;"""④OCT/OCTA图像质量差。本研究经南昌市第一医院伦理委员会批准(伦理审批号:KY2021064)并遵循《赫尔辛基宣言》。所有参与者在研究前均签署知情同意书。
1.2""抗VEGF治疗及分组
纳入患者给予玻璃体腔注射治疗,康柏西普(批准文号:国药准字S20130012,生产单位:成都康弘生物科技有限公司,规格:0.05ml/支)0.05ml,每月1次,连续治疗3个月。治疗后CMT降幅≥100μm者纳入疗效显著组,共59眼;CMT降幅lt;100μm或较前增加者纳入非疗效显著组,共32眼。
1.3""眼科检查和人口学信息
患者均行眼压、最佳矫正视力(best"corrected"visual"acuity,BCVA)和OCT/OCTA等眼科检查。首次玻璃体腔注射康柏西普治疗前收集患者的一般资料,并抽取房水。抗VEGF治疗第3针结束后1个月再次收集相关数据。利用国际标准视力表测量BCVA,并记录为最小分辨角对数视力。眼压测量使用非接触性眼压计(日本Topcon,CT-1)。
1.4""OCT/OCTA检查
患者散瞳后,使用德国海德堡OCT/A诊断仪对黄斑区进行线性扫描(扫描面积:6mm×6mm),自动测量CMT。分割错误的图片由眼科医生进行手动矫正。手动勾画FAZ边界后利用OCT/A计算功能得出该区域面积,FAZ面积为重复6次测量后的平均值。将浅层视网膜毛细血管图像导入Image"J,设定格式及像素阈值,并将图像转化为白色背景红色血流图,分别对红色区域、总区域面积进行测量,VD(%)=红色区域面积/总面积×100%。
1.5""房水样本获取和细胞因子检测
使用前房采集穿刺针进入前房并采集0.1ml房水样本送至北京智德医学检验所有限公司,检测白细胞介素(interleukin,IL)-6、IL-8、IL-10、VEGF。
1.6""统计学方法
采用SPSS"28.0软件对数据进行统计分析。正态分布的计量资料以均数±标准差()表示,比较采用t检验,不符合正态分布的计量资料以中位数(四分位数间距)[M(Q1,Q3)]表示,比较采用Mann-Whitney"U检验;计数资料以例数(百分率)[n(%)]表示,比较采用c2检验。相关性分析采用Spearman分析。绘制受试者操作特征曲线(receiver"operating"characteristic"curve,ROC曲线)评估各指标的疗效预测价值。Plt;0.05为差异有统计学意义。
2""结果
2.1""两组患者的一般资料比较
疗效显著组患者男20例,女18例;平均年龄(55.6±11.9)岁;平均糖尿病病程(12.0±5.8)年。非疗效显著组患者男13例,女11例;平均年龄(57.0±10.0)岁;平均糖尿病病程(11.8±5.9)年。两组患者患眼的BCVA、眼压、CMT比较差异均无统计学意义(Pgt;0.05),见表1。
2.2""两组患眼治疗前后的房水细胞因子、浅层黄斑区微循环比较
治疗前,疗效显著组患眼房水的VEGF、IL-10均显著高于非疗效显著组,IL-8水平显著低于非疗效显著组(Plt;0.05);治疗后,两组患眼房水的VEGF、IL-6、IL-8、IL-10均显著低于本组治疗前(Plt;0.05),疗效显著组患眼房水的VEGF、IL-6、IL-8均显著低于于非疗效显著组,IL-10水平显著高于非疗效显著组(Plt;0.05);抗VEGF治疗前后,两组患眼的FAZ面积和SCP-VD均无显著变化(Pgt;0.05),见表2。
2.3""基线房水细胞因子和浅层黄斑区微循环与CMT
降幅的关系
基线房水VEGF(r=0.571,Plt;0.001)、IL-10(r=0.382,P=0.008)与CMT降幅呈正相关;IL-8与CMT降幅呈负相关(r=–0.689,Plt;0.001);IL-6、FAZ面积、SCP-VD与CMT降幅无相关性(Pgt;0.05)。
2.4""基线房水IL-8、IL-10、VEGF的疗效预测价值
ROC曲线结果显示,基线房水IL-8、VEGF和IL-10预测抗VEGF疗效的曲线下面积(area"under"the"curve,AUC)分别为0.825(95%CI:0.711~0.934)、0.813(95%"CI:0.698~0.930)和0.676(95%"CI:0.532~0.809)。
2.5""基线房水细胞因子与浅层黄斑区微循环的关系
VEGF、IL-6、IL-8、IL-10与FAZ面积和SCP-VD均无相关性(Pgt;0.05),见表3。
3""讨论
本研究发现抗VEGF治疗可有效减轻DME患者的黄斑水肿程度,且房水VEGF和炎症因子水平均较治疗前显著降低,但黄斑区微循环变化不明显。此外,VEGF和炎症因子与抗VEGF疗效有关,且具有一定预测作用。
3.1""DME患者抗VEGF治疗后黄斑结构的变化
本研究结果显示抗VEGF治疗可有效促进DME患者黄斑区视网膜厚度下降,与既往研究结果一"""""致[15-16]。Statler等[17]报道DME患者治疗后黄斑区浅层和深层VD降低;也有研究报道抗VEGF治疗可改善DME患者黄斑区微循环缺血状态[18-20]。但笔者未观察到黄斑区微循环的变化,分析原因:①抗VEGF治疗短期内VEGF水平下调抑制血管再生导致黄斑区缺血加重,或抗VEGF治疗后的某一时间点,因黄斑水肿移位的血管复位使VD增加,本研究的观察节点恰好错过。②DME患者视网膜层解剖变形造成OCTA中自动分割不准确。③抗VEGF治疗首先影响黄斑区深层血流,当前治疗下黄斑区浅层微循环不受影响。④样本量不足,未来需要大样本研究阐述抗VEGF治疗与黄斑区微循环的关系。
3.2""DME患者抗VEGF治疗后房水细胞因子的变化
本研究显示DME患者玻璃体腔抗VEGF治疗后房水细胞因子水平下降,这可能是炎症因子与抗VEGF药物存在相互作用所致。但丁国龙等[21]发现DME患者抗VEGF治疗后3~7d,IL-6和IL-8水平较治疗前升高,VEGF水平降低。推测有以下原因:①观察时间点不同,本研究观察时通过代偿通路促使炎症因子升高的作用已消失。②VEGF和炎症因子存在相关性,因此抗VEGF治疗抑制VEGF表达后,其与炎症因子之间的相互作用通路可能受影响,从而间接抑制炎症因子生成[22]。
3.3""抗VEGF疗效和房水细胞因子的关系
本研究结果显示VEGF、IL-10和IL-8与CMT降幅相关,与先前研究报道结果相似[23]。研究发现DME可促进IL-8表达上调,进而增加血管通透性导致黄斑水肿加剧[24]。表明随着疾病的发展,炎症因子可能是影响黄斑水肿程度的主要因素,这可能是部分患者对抗VEGF药物低应答的原因[25-28]。本研究未发现FAZ面积和SCP-VD与CMT降幅相关,这与Lee等[29]研究结果一致。研究发现相较于单纯DR,DME患者深层FAZ面积更大,因此DR深层视网膜毛细血管丛较浅层更早出现微循环变化[30-31]。
综上,抗VEGF治疗可下调房水VEGF和炎症因子水平,对黄斑区浅层微循环无影响。基线VEGF、IL-8和IL-10水平与抗VEGF疗效相关,并具有一定预测价值。黄斑区微循环变化与抗VEGF疗效和细胞因子表达无相关性。
利益冲突:所有作者均声明不存在利益冲突。
[参考文献]
[1] 万文萃,"龙洋."糖尿病视网膜病变的流行病学、病因学与发病机制研究现状[J]."眼科新进展,"2022,"42(9):"673–679.
[2] KLEIN"B"E."Overview"of"epidemiologic"studies"of"diabetic"retinopathy[J]."Ophthalmic"Epidemiol,"2007,"14(4):"179–183.
[3] TAN"G"S,"CHEUNG"N,"SIMÓ"R,"et"al."Diabetic"macular"oedema[J]."Lancet"Diabetes"Endocrinol,"2017,"5(2):"143–155.
[4] PARRAVANO"M,"COSTANZO"E,"QUERQUES"G."Profile"of"non-responder"and"late"responder"patients"treated"for"diabetic"macular"edema:"Systemic"and"ocular"factors[J]."Acta"Diabetol,"2020,"57(8):"911–921.
[5] DONG"N,"XU"B,"WANG"B,"et"al."Study"of"27"aqueous"humor"cytokines"in"patients"with"type"2"diabetes"with"or"without"retinopathy[J]."Mol"Vis,"2013,"19:"1734–1746.
[6] MAGGIO"E,"SARTORE"M,"ATTANASIO"M,"et"al."Anti-vascular"endothelial"growth"factor"treatment"for"diabetic"macular"edema"in"a"real-world"clinical"setting[J]."Am"J"Ophthalmol,"2018,"195:nbsp;209–222.
[7] 陆华文,"杨俊."光学相干断层扫描血管成像在常见眼底病诊断中的应用进展[J]."精准医学杂志,"2024,"39(1):"81–83,"87.
[8] GILL"A,"COLE"E"D,"NOVAIS"E"A,"et"al."Visualization"of"changes"in"the"foveal"avascular"zone"in"both"observed"and"treated"diabetic"macular"edema"using"optical"coherence"tomography"angiography[J]."Int"J"Retina"Vitreous,"2017,"3:"19.
[9] DASTIRIDOU"A,"KARATHANOU"K,"RIGA"P,"et"al."OCT"angiography"study"of"the"macula"in"patients"with"diabetic"macular"edema"treated"with"intravitreal"aflibercept[J]."Ocul"Immunol"Inflamm,"2021,"29(5):"926–931.
[10] BROMEO"A"J,"GRULLA-QUILENDRINO"P,"ANTOLIN"R"C,"et"al."Optical"coherence"tomography"angiography"analysis"of"changes"in"the"foveal"avascular"zone"in"eyes"with"diabetic"macular"edema"treated"with"intravitreal"anti-vascular"endothelial"growth"factor[J]."Int"J"Retina"Vitreous,"2022,"8(1):"57.
[11] CHEONG"K"X,"LEE"S"Y,"ANG"M,"et"al."Vessel"density"changes"on"optical"coherence"tomography"angiography"after"vascular"endothelial"growth"factor"inhibitor"treatment"for"diabetic"macular"edema[J]."Turk"J"Ophthalmol,"2020,"50(6):"343–350.
[12] WILKINSON"C"P,"FERRIS"F"L,"KLEIN"R"E,"et"al."Proposed"international"clinical"diabetic"retinopathy"and"diabetic"macular"edema"disease"severity"scales[J]."Ophthalmology,"2003,"110(9):"1677–1682.
[13] GROVER"S,"MURTHY"R"K,"BRAR"V"S,"et"al."Normativenbsp;data"for"macular"thickness"by"high-definition"spectral-domain"optical"coherence"tomography"(spectralis)[J]."Am"J"Ophthalmol,"2009,"148(2):"266–271.
[14] 中华医学会糖尿病学分会."中国2型糖尿病防治指南(2020年版)[J]."中华糖尿病杂志,"2021,"13(4):"315–409.
[15] MATSUNAGA"D"R,"SALABATI"M,"OBEID"A,"et"al."Outcomes"of"eyes"with"diabetic"macular"edema"that"are"lost"to"follow-up"after"anti-vascular"endothelial"growth"factor"therapy[J]."Am"J"Ophthalmol,"2022:"233:"1–7.
[16] 孟婷,"孙洪岩,"罗彬,"等."康柏西普不同给药方案治疗DME的安全性和疗效评估[J]."国际眼科杂志,"2023,"23(1):"138–141.
[17] STATLER"B,"CONTI"T"F,"CONTI"F"F,"et"al."Twenty-four-"month"OCTA"assessment"in"diabetic"patients"undergoing"fixed-interval"intravitreal"aflibercept"therapy[J]."Ophthalmic"Surg"Lasers"Imaging"Retina,"2020,"51(8):"448–455.
[18] MASTROPASQUA"R,"D’ALOISIO"R,"DI"NICOLA"M,"et"al."Relationship"between"aqueous"humor"cytokine"level"changes"and"retinal"vascular"changes"after"intravitreal"aflibercept"for"diabetic"macular"edema[J]."Sci"Rep,"2018,"8(1):"16548.
[19] ZHU"Z,"LIANG"Y,"YAN"B,"et"al."Clinical"effect"of"conbercept"on"improving"diabetic"macular"ischemia"by"OCT"angiography[J]."BMC"Ophthalmol,"2020,"20(1):"382.
[20] 符树宇,"黄雄高,"胡卫文,"等."康柏西普对DME患者黄斑部微循环的影响[J]."国际眼科杂志,"2022,"22(3):"474–479.
[21] 丁国龙,"谢安明,"雷剑琴,"等."增生型糖尿病视网膜病变患者玻璃体内注射贝伐单抗后房水中细胞因子的变化及其相关性分析[J]."眼科新进展,"2017,"37(4):"358–361.
[22] USUI-OUCHI"A,"TAMAKI"A,"SAKANISHI"Y,"et"al."Factors"affecting"a"short-term"response"to"anti-VEGF"therapy"in"diabetic"macular"edema[J]."Life"(Basel),"2021,"11(2):"83.
[23] WU"J,"ZHONG"Y,"YUE"S,"et"al."Aqueous"humor"mediator"and"cytokine"aberrations"in"diabetic"retinopathy"and"diabetic"macular"edema:"A"systematic"review"and"Meta-analysis[J]."Dis"Markers,"2019,"2019:"6928524.
[24] NOMA"H,"YASUDA"K,"SHIMURA"M."Involvement"of"cytokines"in"the"pathogenesis"of"diabetic"macular"edema[J]."Int"J"Mol"Sci,"2021,"22(7):"3427.
[25] LECHNER"J,"O’LEARY"O"E,"STITT"A"W."The"pathology"associated"with"diabetic"retinopathy[J]."Vision"Res,"2017,"139:"7–14.
[26] 朱澜澜,"高自清,"戴青."房水中IL-6、TNF-α和VEGF的变化与糖尿病性黄斑水肿的相关性研究[J]."临床眼科杂志,"2022,"30(4):"316–320.
[27] LOPORCHIO"D"F,"TAM"E"K,"CHO"J,"et"al."Cytokine"levels"in"human"vitreous"in"proliferative"diabetic"retinopathy[J]."Cells,"2021,"10(5):"1069.
[28] PETROVIČ"M"G,"KOROŠEC"P,"KOŠNIK"M,"et"al."Association"of"preoperative"vitreous"IL-8"and"VEGF"levels"with"visual"acuity"after"vitrectomy"in"proliferative"diabetic"retinopathy[J]."Acta"Ophthalmol,"2010,"88(8):"e311–e316.
[29] LEE"J,"MOON"B"G,"CHO"A"R,"et"al."Optical"coherence"tomography"angiography"of"DME"and"its"association"with"anti-VEGF"treatment"response[J]."Ophthalmology,"2016,"123(11):"2368–2375.
[30] HUANG"W"H,"LAI"C"C,"CHUANG"L"H,"et"al."Foveal"microvascular"integrity"association"with"anti-VEGF"treatment"response"for"diabetic"macular"edema[J]."Invest"Ophthalmol"Vis"Sci,"2021,"62(9):"41.
[31] DENG"Y,"CAI"X,"ZHANG"S,"et"al."Quantitative"analysis"of"retinal"microvascular"changes"after"conbercept"therapy"in"branch"retinal"vein"occlusion"using"optical"coherence"tomography"angiography[J]."Ophthalmologica,"2019,"242(2):"69–80.
(收稿日期:2024–07–11)
(修回日期:2024–10–14)