田璎 吴杰 邹畅
[摘要] 肿瘤细胞的增殖和生长需要营养物质的支持,并进行能量代谢重编程。其中,线粒体功能改变是多种类型肿瘤发生的标志之一。Warburg效应是指肿瘤细胞通过激活乳酸脱氢酶、抑制丙酮酸代谢而产生大量乳酸,并在线粒体中进行能量代谢重编程的过程。肿瘤耐药是当前肿瘤临床治疗中较为棘手的问题之一。研究发现Warburg效应与抗肿瘤药物的耐药性息息相关。本文阐述Warburg效应在肿瘤耐药中的研究进展,为临床攻克肿瘤耐药提供新思路。
[关键词] Warburg效应;肿瘤耐药;葡萄糖转运蛋白;细胞凋亡;有氧糖酵解
[中图分类号] R979.1 [文献标识码] A [DOI] 10.3969/j.issn.1673-9701.2024.16.033
1956年,Warburg[1]研究发现肿瘤细胞存在一种特殊的代谢特征,即在氧气充足的情况下肿瘤细胞优先选择产能率相对较低的糖酵解途径为自身供能,削弱有氧呼吸,产生大量腺苷三磷酸(adenosine- triphosphate,ATP),称作Warburg效应。Warburg效应也被称为有氧糖酵解,其可满足肿瘤细胞快速生长对能量和代谢物质的需求,有助于维持细胞内部的氧化还原稳态。肿瘤是严重威胁人类生命健康的疾病之一。药物治疗在肿瘤临床治疗中占据重要地位,然而药物耐药也给肿瘤治疗带来困扰[2]。Warburg效应与肿瘤耐药密切相关。研究表明Warburg效应可增强结直肠癌细胞对抗肿瘤药物的抵抗力,且在对抗肿瘤药物抵抗力更强的肿瘤中糖酵解作用更明显,磷酸果糖激酶-1可增强Warburg效应,促进结直肠癌细胞对表皮生长因子受体抑制剂的耐药性[3];M2型丙酮酸激酶(pyruvate kinase M2,PKM2)是Warburg效应中的糖酵解酶,其在膀胱癌中表达上调,导致膀胱癌顺铂耐药[4];葡萄糖转运蛋白在多种恶性肿瘤中过度表达,易导致顺铂耐药,在头颈部鳞状细胞癌中,沉默WNT2B可逆转葡萄糖转运蛋白过表达导致的顺铂耐药[5]。Warburg效应还在乳腺癌、肝细胞癌和宫颈癌等肿瘤耐药中发挥显著作用[6-8]。肿瘤细胞中的Warburg效应可增强肿瘤细胞对抗肿瘤药物的耐药性,且肿瘤细胞中的糖酵解反应更多[9-10]。本文对Warburg效应和肿瘤耐药的特点及Warburg效应对肿瘤耐药的调控机制研究进展进行阐述,为提高临床靶向治疗疗效提供参考。
1 Warburg效应概述
肿瘤细胞利用大量的营养物质维持其无限增殖和生长,能量代谢重编程被认为是肿瘤发生的标志之一[11]。能量代谢的改变导致营养缺乏和代谢废物积累,影响肿瘤细胞附近非肿瘤细胞的生物学行为[12]。在糖酵解过程中,葡萄糖分解产生丙酮酸和少量ATP。在正常细胞中,丙酮酸进入三羧酸循环产生能量;而在肿瘤细胞中,无论氧气水平如何,细胞都表现出高糖酵解活性,通过激活乳酸脱氢酶、抑制丙酮酸代谢产生大量乳酸[10]。Warburg效应表明细胞利用能量的方式由氧化磷酸化转变为糖酵解,被视为肿瘤的一大特征[11]。Warburg效应的内在机制十分复杂,尚未完全明确。研究证实K-ras突变及抑癌基因p53表达异常与Warburg效应有关[13-14];糖代谢中关键酶的改变也与Warburg效应有关[15]。
2 肿瘤耐药概述
耐药一般是指病原体与药物多次接触后对药物的敏感度降低或无效。肿瘤耐药可分为内源性耐药(在化疗药物应用前便存在耐药因素)和获得性耐药(在化疗药物应用后产生的适应性反应)。肿瘤耐药发生机制如下。
2.1 P-糖蛋白
抗肿瘤药物进入细胞后被识别并外排,弥散到浆膜时遇到多药耐药运载体,多药耐药运载体利用两个ATP结合位点上的能量将药物泵出细胞外。化疗药物及其他药物单一且长期应用可激活P-糖蛋白活性,减少药物在细胞内的积蓄,从而产生肿瘤多药耐药。
2.2 表观遗传学改变
在肿瘤的发生发展过程中,非DNA序列改变引起的基因表达变化主要有DNA甲基化、非编码RNA和组蛋白修饰等表观遗传学改变。肿瘤细胞可通过DNA高甲基化抑制抑癌基因的表达。肿瘤细胞系中ATP结合盒亚家族B成员1基因过表达可导致肿瘤细胞内抗肿瘤药物毒性降低,这是获得多重耐药的主要原因[16]。
2.3 细胞凋亡
研究发现肿瘤耐药与细胞凋亡相关基因如抗凋亡基因Bcl-2、p53等的过表达有关,细胞凋亡相关基因也可作为耐药的靶分子,与其他途径共同介导细胞生物功能[17]。
3 Warburg效应调控肿瘤耐药的机制
3.1 致癌蛋白和肿瘤因子
肿瘤中的细胞代谢重编程受致癌蛋白和肿瘤因子的调控。缺氧诱导因子(hypoxia-inducible factor,HIF)在Warburg效应中发挥重要作用,可促进三羧酸循环和糖酵解的断开,诱导还原性酵解[18-19]。研究发现Warburg效应可激活HIF-1α介导的信号通路,抑制糖酵解和细胞自噬,使宫颈癌HeLa-R细胞对紫杉醇重获敏感[8]。在卵巢癌中,HIF-1α、K-ras和磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)等致癌基因表达的改变通过直接调节糖酵解酶,如己糖激酶2(hexokinase 2,HK2)和乳酸脱氢酶A促进有氧糖酵解[20-21]。同时,可通过丙酮酸脱氢酶激酶1(pyruvate dehydrogenase kinase 1,PDK1)抑制丙酮酸脱氢酶促进还原代谢[22];PDK1可被HIF-1α、蛋白激酶B(protein kinase B,PKB,又称Akt)和磷酸甘油酸激酶1进一步激活,从而促进肿瘤耐药[23]。
研究表明PI3K/Akt信号通路可介导肿瘤耐药[24]。结肠癌转移相关基因1可通过PI3K/Akt信号通路促进Warburg效应,进一步增强胃癌细胞曲妥珠单抗耐药[25]。PI3K/Akt/哺乳动物雷帕霉素靶蛋白及Ras/促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路通过激活糖酵解过程促进原发性中枢神经系统淋巴瘤衍生细胞对甲氨蝶呤耐药[26]。研究发现神经纤维瘤蛋白1可激活间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)的K-ras突变,这是驱动神经母细胞瘤中ALK抑制剂耐药的真正临床原因,Ras/MAPK信号通路下游信号传导的重新激活是ALK抑制剂耐药的发生机制[27]。维生素C可能对肿瘤治疗有积极作用,其机制是通过下调K-ras突变肿瘤中的关键代谢检查点导致Warburg效应中断,而不杀死人类永生化结直肠癌细胞。维生素C诱导Ras脱离细胞膜,抑制胞外信号调节激酶1/2和PKM2磷酸化,继而下调葡萄糖转运蛋白1和PKM2-PTB依赖蛋白的表达,Warburg效应中断导致能量应激而产生耐药[28]。
3.2 葡萄糖转运蛋白
葡萄糖转运蛋白在人体组织和器官中广泛表达,是主要的葡萄糖跨膜转运蛋白。研究发现葡萄糖转运蛋白可促进有氧糖酵解,产生更多的丙酮酸对抗活性氧(reactive oxygen species,ROS)诱导的坏死性细胞凋亡,并使细胞周期处于静止状态[29-30]。在Warburg效应中,生长因子可促进PI3K/Akt信号通路的活化,Akt可提高葡萄糖转运蛋白的活性,已糖激酶、磷酸果糖激酶、糖酵解酶可促进糖酵解的发生。另一项研究发现高葡萄糖可减弱5-氟尿嘧啶在人结肠癌细胞中的抗增殖作用和细胞毒性[31]。
3.3 细胞凋亡
细胞凋亡指为维持内环境稳定,由基因控制的细胞自主有序死亡。细胞凋亡信号通路的失调使肿瘤细胞产生耐药性。研究发现Warburg效应可通过抑制细胞凋亡抵抗细胞死亡的诱导[32]。增强糖酵解代谢可降低细胞内ROS水平,ROS被认为是诱导细胞凋亡的重要因素[33-34];糖酵解酶还可通过直接调节细胞凋亡挽救ROS诱导的细胞凋亡[35]。PKM2可易位至线粒体并磷酸化Bcl-2,促进Bcl-2的表达,抑制细胞凋亡[35]。HK2也可转移到线粒体保护肿瘤细胞免于凋亡[36]。相反,抑制人结直肠癌细胞的糖酵解可导致细胞凋亡增加,降低对5-氟尿嘧啶的抵抗[37]。有氧糖酵解的减少伴随细胞凋亡的增加[38]。
4 小结与展望
肿瘤细胞能量代谢与正常细胞不同,是一个复杂的过程,尤其是葡萄糖代谢过程。糖酵解不仅可提供能量,还可提供细胞生物合成所需中间产物,为肿瘤细胞的快速增殖提供能量和营养,帮助肿瘤细胞逃避代谢压力,促进肿瘤细胞免疫逃逸等。因此,研究Warburg效应中的关键调控点可为肿瘤的耐药治疗提供方向和策略。多种蛋白和信号通路参与Warburg效应调控肿瘤耐药,随着研究的深入,Warburg效应参与肿瘤耐药的机制更加明晰,将为临床靶向药物的选择提供更多帮助,给患者带来更好的治疗效果。
利益冲突:所有作者均声明不存在利益冲突。
[参考文献]
[1] WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309–314.
[2] VASAN N, BASELGA J, HYMAN D M. A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299–309.
[3] MADDALENA F, CONDELLI V, MATASSA D S, et al. TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas[J]. Mol Oncol, 2020, 14(12): 3030–3047.
[4] WANG Y, HAO F, NAN Y, et al. PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis[J]. Int J Biol Sci, 2018, 14(13): 1883–1891.
[5] LI S J, YANG X N, QIAN H Y. Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma[J]. Am J Cancer Res, 2014, 5(1): 300–308.
[6] YUAN Y, GAO H, ZHUANG Y, et al. NDUFA4L2 promotes trastuzumab resistance in HER2-positive breast cancer[J]. Ther Adv Med Oncol, 2021, 13: 17588359211027836.
[7] MA L, LIU W, XU A, et al. Activator of thyroid and retinoid receptor increases sorafenib resistance in hepatocellular carcinoma by facilitating the Warburg effect[J]. Cancer Sci, 2020, 111(6): 2028–2040.
[8] PENG X, GONG F, CHEN Y, et al. Autophagy promotes paclitaxel resistance of cervical cancer cells: Involvement of Warburg effect activated hypoxia-induced factor 1-α- mediated signaling[J]. Cell Death Dis, 2014, 5(8):e1367.
[9] WANG Y, ZHANG D, LI Y, et al. MiR-138 suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer[J]. Onco Targets Ther, 2020, 13: 3607–3618.
[10] LI H, CHEN J, LIU J, et al. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism[J]. Exp Cell Res, 2021, 409(1): 112892.
[11] HANAHAN D, WEINBERG R A. Hallmarks of cancer: The next generation[J]. Cell, 2011, 144(5): 646–674.
[12] PAVLOVA N N, ZHU J, THOMPSON C B. The hallmarks of cancer metabolism: Still emerging[J]. Cell Metab, 2022, 34(3): 355–377.
[13] PALORINI R, DE RASMO D, GAVIRAGHI M, et al. Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin- reversible alterations of mitochondrial dynamics and respiration[J]. Oncogene, 2013, 32(3): 352–362.
[14] WANKA C, STEINBACH J P, RIEGER J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40): 33436–33446.
[15] HIRSCHHAEUSER F, SATTLER U G, MUELLER- KLIESER W. Lactate: A metabolic key player in cancer[J]. Cancer Res, 2011, 71(22): 6921–6925.
[16] POTE M S, GACCHE R N. ATP-binding cassette efflux transporters and MDR in cancer[J]. Drug Discov Today, 2023, 28(5):103537.
[17] CARNEIRO B A, EL-DEIRY W S. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17(7):395–417.
[18] HOLOHAN C, VAN SCHAEYBROECK S, LONGLEY D B, et al. Cancer drug resistance: An evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10): 714–726.
[19] DIAZ-MORALLI S, TARRADO-CASTELLARNAU M, MIRANDA A, et al. Targeting cell cycle regulation in cancer therapy[J]. Pharmacol Ther, 2013, 138(2): 255–271.
[20] TYAGI K, MANDAL S, ROY A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188563.
[21] DESBATS M A, GIACOMINI I, PRAYER-GALETTI T, et al. Metabolic plasticity in chemotherapy resistance[J]. Front Oncol, 2020, 10: 281.
[22] KIM J W, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3(3):177–185.
[23] SEMENZA G L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. J Clin Invest, 2013, 123(9): 3664–3671.
[24] SLOMOVITZ B M, COLEMAN R L. The PI3K/Akt/ mTOR pathway as a therapeutic target in endometrial cancer[J]. Clin Cancer Res, 2012, 18(21): 5856–5864.
[25] LIU J, PAN C, GUO L, et al. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway[J]. J Hematol Oncol, 2016, 9(1): 76.
[26] TAKASHIMA Y, HAYANO A, YAMANAKA R. Metabolome analysis reveals excessive glycolysis via PI3K/AKT/mTOR and RAS/MAPK signaling in methotrexate- resistant primary CNS lymphoma-derived cells[J]. Clin Cancer Res, 2020, 26(11): 2754–2766.
[27] BERLAK M, TUCKER E, DOREL M, et al. Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells[J]. Mol Cancer, 2022, 21(1): 126.
[28] AGUILERA O, MU?OZ-SAGASTIBELZA M, TORREJ?N B, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer[J]. Oncotarget, 2016, 7(30): 47954–47965.
[29] HUANG C Y, HUANG C Y, PAI Y C, et al. Glucose metabolites exert opposing roles in tumor chemoresistance[J]. Front Oncol, 2019, 9: 1282.
[30] WANG T, NING K, LU T X, et al. Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer[J]. Oncol Rep, 2017, 37(2): 1059–1065.
[31] MA Y S, YANG I P, TSAI H L, et al. High glucose modulates antiproliferative effect and cytotoxicity of 5-fluorouracil in human colon cancer cells[J]. DNA Cell Biol, 2014, 33(2): 64–72.
[32] XU R H, PELICANO H, ZHOU Y, et al. Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J]. Cancer Res, 2005, 65(2): 613–621.
[33] LIU X, ZHANG Y, LU W, et al. Mitochondrial TXNRD3 confers drug resistance via redox-mediated mechanism and is a potential therapeutic target in vivo[J]. Redox Biol, 2020, 36: 101652.
[34] XU H, ZENG Y, LIU L, et al. PRL-3 improves colorectal cancer cell proliferation and invasion through IL-8 mediated glycolysis metabolism[J]. Int J Oncol, 2017, 51(4): 1271–1279.
[35] LIANG J, CAO R, WANG X, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2[J]. Cell Res, 2017, 27(3): 329–351.
[36] ROBERTS D J, MIYAMOTO S. Hexokinase Ⅱ integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy[J]. Cell Death Differ, 2015, 22(2): 248–257.
[37] WANG T, NING K, SUN X, et al. Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer[J]. BMC Cancer, 2018, 18(1): 207.
[38] ZHONG X, HE X, WANG Y, et al. Warburg effect in colorectal cancer: The emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol, 2022, 15(1): 160.
(收稿日期:2023–08–27)
(修回日期:2024–05–15)