苹果苦痘病发生规律及防治研究进展

2024-06-15 18:37靖吉越郭新送朱福军杨志峰范仲卿张培苹刘禄马学文高涵
果树学报 2024年5期
关键词:防治技术苹果

靖吉越 郭新送 朱福军 杨志峰 范仲卿 张培苹 刘禄 马学文 高涵

DOI:10.13925/j.cnki.gsxb.20240001

摘    要:钙是苹果生长发育过程中必需的矿质元素之一,缺钙会导致细胞代谢失调,引发苹果苦痘病等生理病害,严重影响果实品质。苹果主要通过根系在土壤中吸收钙,根系吸收的钙在蒸腾拉力的带动下运往地上部,而蒸腾作用弱,导致苹果果实易发生生理缺钙。果实中的钙含量与树种、砧木类型等树体因子和施肥、修剪等农技措施密切相关。综述了苹果苦痘病与钙之间的关系、苹果钙吸收转运、苹果缺钙机制和苹果苦痘病防治的研究进展,以期为提高果树钙吸收能力,增加果实钙含量预防苹果苦痘病,促进果实生长及改善采后贮藏品质,减轻果农负担,促进苹果产业健康可持续发展提供理论依据及指导方法。

关键词:苹果;钙;苦痘病;钙吸收能力;防治技术

中图分类号:S661.1           文献标志码:A            文章编号:1009-9980(2024)05-0990-09

收稿日期:2024-01-08        接受日期:2024-03-11

基金项目:山东省重点研发计划(2021CXGC010804);泰安市科技创新发展项目(2021NS089)

作者简介:靖吉越,男,助理工程师,硕士,主要从事土壤化学与环境研究。Tel:0538-3529921,E-mail:JingJy@stu.njau.edu.cn

*通信作者 Author for correspondence. Tel:0538-3529921,E-mail:guoxinsong1028@163.com

果 树 学 报 2024,41(5): 990-998

Journal of Fruit Science

Research progress in the occurrence and control of bitter pit disorder in apple

JING Jiyue1, GUO Xinsong1*, ZHU Fujun1, YANG Zhifeng2, FAN Zhongqing1, ZHANG Peiping2, LIU Lu1, MA Xuewen1, GAO Han1

(1Key Laboratory of Humic Acid Fertilizer, Ministry of Agriculture and Rural Affairs/Shandong Agricultural University Fertilizer Science Tech. Co. Ltd., Taian 271600, Shandong, China; 2Yantai Agriculture and Rural Bureau, Yantai 264009, Shandong, China)

Abstract: The apple (Malus pumila) is a deciduous fruit crop of the Rosaceae family and one of the four most important fruit species in the world. China ranks first in the world in per capita consumption and exports of apples. The apple industry plays a key role in the national economy, but the apple fruit quality in China is poor and the proportion of high quality fruit is low. As we all know, calcium is one of the essential mineral elements in the process of apple growth and development, and it is an important component of the cell wall, which plays an important role in maintaining cell membrane homeostasis and intracellular signal transduction. Too high or low intracellular calcium ion concentrations have a negative effect on apples. Keeping intracellular calcium homeostasis plays an important role in plant growth and development and response to stress. The lack of calcium leads to disturbances in cell metabolism, causing apple bitter pit and other physiological disorders, which seriously affect the fruit quality. Apple bitter pit is a physiological disorder caused by calcium deficiency in fruit, manifested by the rupture of flesh cells and the formation of small, dark-coloured indentations. Apple bitter pit often occurs when fruit is close to ripening and during the time of storage, and is most common in the distal part of the fruit. In apple cell, low concentrations of intracellular calcium reduce the stability of cell walls, cell membranes and membrane-bound proteins, but high concentrations are also toxic to the cell, with high concentrations of calcium ion leading to the formation of phosphate precipitates that interfere with phosphate-based energy metabolism and compete with magnesium ions for enzyme binding sites. Ensuring intracellular calcium homeostasis is important for healthy growth of apple. Calcium homeostasis in the cytoplasm of apple involves a variety of calcium transporters and organelles, which form a complex regulatory network. Apple mainly absorbs calcium from the soil through the root and transports it to the above-ground part under the drive of transpiration pull. Since the transpiration of fruit is low, apple fruit is susceptible to physiological calcium deficiency. At the cellular level, apple mainly absorbs calcium ions through the apoplastic and symplastic pathways in the root vascular bundles, and the above-ground parts of plants can absorb calcium ion through non-vascular bundles. The root system absorbs and transports calcium ion through calcium channels, the superfamily of calcium ion/cation anti-transporters (CaCAs) and the P-type Ca2+-ATPase, which transports calcium ion in a chelated state through the xylem to the vigorously growing canopy, including young leaves, flowers, fruits and apical meristematic tissues. In general, apple peel calcium concentration is higher than flesh, and phloem calcium content is higher than xylem. In the early stages of apple fruit growth, calcium is evenly distributed throughout the fruit, but as the season progresses there are differences in concentration, with the highest calcium content in the peel, the lowest in the flesh, and the middle in the seed and centre of the fruit. Fruit calcium content is closely related to tree factors such as cultivar, rootstock type and agronomic practices like fertilization and pruning. The calcium content in fruit trees and the distribution of calcium in the fruit are largely controlled by genes, and different stion combinations also have significant effects on apple fruit calcium content. Calcium uptake by apple is also influenced by the balance of calcium with other mineral elements and total salinity. In addition, overgrowth of fruit trees and competition for calcium between branches and fruit lead to low calcium levels in fruit. External application of various types of calcium fertilizer can increase the calcium content in fruit, improve fruit quality and increase fruit shelf life. Although calcium plays an extremely important role in preventing bitter pit in apples, a single calcium deficiency may not the key factor in triggering apple bitter pit. Compared to healthy fruit, symptomatic fruit has lower levels of calcium and boron, while the opposite is true for nitrogen, potassium, phosphorus and magnesium; the lower the calcium content in the fruit, the higher the magnesium and potassium content, and the more severe the apple bitter pit disorder. The improvement and enhancement of the fruit quality and appearance will open up more opportunities for our apple industry and will promote its healthy development. This paper reviews the relationship between apple bitter pit disorder and calcium, calcium absorption and transport in apple, the mechanism of calcium deficiency in apple and the progress in research on the control of apple bitter pit disorder, with a view to improving the calcium absorption capacity of fruit trees, increasing the calcium content in fruits to prevent apple bitter disorder, improving the fruit growth and quality during post-harvest storage, reducing the burden of fruit growers, and promoting the development of the apple industry.

Key words: Apple; Calcium; Bitter pit; Calcium absorption capacity; Control technique

蔷薇科落叶果树苹果(Malus pumila)是世界四大水果之一,具有较高的营养价值。中国苹果的栽培面积约232.38万hm2、平均年产量4 388.23万t,分别占世界的48%、54%;中国苹果的人均占有率与出口额均位列世界第一;中国现已发展为世界上最大的苹果生产国和消费国[1-3]。黄土高原、渤海湾、黄河故道、秦岭北麓和西南冷凉高地是中国苹果的主产区,苹果产业是国民经济的重要组成部分。但中国苹果果实品质较差,优果率低。苹果苦痘病(bitter pit,BP)是影响苹果经济性状的主要病害,尤其在实行套袋栽培后发病日益严重[4]。

苹果苦痘病是由果实缺钙(Ca)引起的常见的生理病害,一般在果实接近成熟时开始出现;多发于果顶处,具体表现为果肉细胞破裂,形成小的深色凹陷;降低了果品等级与果实耐储性,严重影响了果实的商品率等经济性状[4-6]。虽然苹果苦痘病常常发现于果实成熟期和储藏期,但是其发生可能源于果实生长发育的整个时期[7-8]。有研究指出,品种、砧木类型、树龄、生长势、负载量、营养施肥、果实大小、采收时期和贮藏条件等因素与苹果苦痘病发生密切相关[9-11]。笔者从苹果钙吸收转运,苹果苦痘病与果树品种、果实生长发育、钙和其他元素的关系,以及预防苦痘病措施等方面,论述了苹果苦痘病发生规律及防治方法的研究进展,并对下一步的研究方向进行了展望。

1 钙与苹果苦痘病的关系

钙不仅参与苹果生长发育和形态建成,更重要的是作为胞外信号和胞内生理生化反应的第二信使调控苹果生长和发育[12]。钙对苹果品质的影响比氮(N)、磷(P)、钾(K)、镁(Mg)重要,缺Ca会引起苹果果实的生理失调,造成苹果发生苦痘病等病害[13]。钙具有稳定细胞膜结构、提高苹果抗逆性和减少果实生理病害等多种功能。钙离子(Ca2+)/钙调蛋白参与对谷氨酸脱羧酶的激活,而谷氨酸脱羧酶在调控脱落酸(ABA)对苹果苦痘病的调控中起着信号转导的作用[14]。发生苦痘病的果实中N、P、K和Mg的含量明显高于正常果,而Ca和硼(B)的含量则要低于正常果[15-17]。Schlegel等[18]在2002年发现,苦痘病果实与正常果实细胞结构差异主要表现在细胞壁、细胞膜和细胞器3个方面。与健康组织相比,苦痘病组织有更高浓度的草酸和柠檬酸,而过多的草酸和柠檬酸会通过溶解细胞壁的中胶层诱发苦痘病;而钙可以将多余的草酸和柠檬酸转化成不溶性的盐,限制其对细胞壁的破坏[18]。贮藏过程中果实水溶性钙和果胶钙向磷酸钙及草酸钙的无效化转变,以及由此引起的细胞膜系统结构损伤和功能紊乱,是缺钙导致苹果果实生理失调的重要机制之一[19]。

大量的研究表明,树体单一的缺钙并不一定会导致苦痘病的发生。苹果苦痘病的发生率与叶和果实中的Ca含量、K/Ca、(K+Mg)/Ca、N/Ca相关,苦痘病果实K/Ca、(K+Mg)/Ca、N/Ca比值高于未发病果实[20]。在苹果栽培过程中,果实着生位置、土壤类型和施肥措施等会通过影响果实钙含量进而影响苦痘病的发生[21]。钙与细胞膜表面的磷脂和蛋白质的羧基相结合,可以提高细胞膜的稳定性和疏水性,增强细胞对钾离子(K+)、钠离子(Na+)、镁离子(Mg2+)等离子吸收的选择性,从而增强苹果对盐害、冻害、热害、干旱和病虫害等逆境的抗性[22]。苹果缺钙,在细胞层面表现为:细胞壁解体,细胞壁和中胶层变软;细胞膜结构被破坏,透性增大,细胞内养分外渗,使树体易感染真菌和细菌性病害。外部形态表现为:根系和枝条生长点坏死,幼叶卷曲,叶边缘发黄;果实缺钙时,呈现水浸状,缺钙组织形成凹陷或空腔,果实中多酚氧化物形成的褐色素使缺钙组织呈现出棕褐色[23]。钙还在调节过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)等活性以防止膜脂过氧化过程中扮演着重要角色[24-25]。用X射线光谱仪分析钙定位与苦痘病发生之间的关系,发现病果果皮组织中的钙含量明显低于健康果实,病斑区果肉中积累大量的钾,在果皮细胞中发生钙外泄,液泡内钙明显减少[10]。可见,Ca含量、K/Ca、(K+Mg)/Ca、N/Ca与苹果苦痘病的发生率密切相关。

2 钙吸收转运

钙是土壤中存在的最丰富的矿质元素之一,土壤中的钙分为无机态钙和有机态钙两大类,其中大部分的钙以无机态钙的形式存在于土壤固相中,如:硅酸钙、硫酸钙、碳酸钙等是植物不能直接吸收利用的钙[26]。在自然条件下,植物主要通过侧根发生部位和尚未木栓化的根尖等幼嫩部分从土壤中获取钙,土壤中的钙离子主要通过质流、扩散和根系截获等方式到达植物根系表面,再通过质外体和共质体等途径从表皮细胞转移到皮层,然后转移到中柱,最后随木质部的液流在蒸腾拉力的作用下运输到植物的各个部分[27]。内皮层中的凯氏带和木栓质是质外体运输的主要屏障。质外体中的Ca2+必须通过质膜中的钙离子通道等方式进入内皮层细胞的细胞质[28-29]。根系对钙的吸收受外界钙浓度影响:外界钙浓度低时,钙的吸收符合米氏酶动力学曲线,是典型的主动运输;外界钙浓度高时,钙的吸收受浓度影响较大,并与蒸腾速率呈线性关系[30]。

钙在组织中有两种运输途径,一是通过质外体途径(包括细胞壁、细胞间隙及木质部导管等部分)扩散,或通过与细胞壁结合位点结合运输钙,其动力是扩散和离子交换作用[31];二是共质体运输,一部分钙以游离态的形式通过钙离子通道、Ca2+/阳离子反向转运体(CaCA超家族)和P型Ca2+-ATPase等钙转运体吸收和转运钙离子[32-33]。钙是不易移动的元素,当钙到达这些组织或器官后多数会被固定下来,几乎不再分配。在细胞水平,植物通过钙离子转运系统控制胞质对Ca2+的吸收和转运,维持细胞质内游离Ca2+的静息浓度,既能使细胞质中游离Ca2+浓度迅速升高以响应环境变化,又能使其维持低浓度状态以防止其对细胞代谢的毒性[26,34]。

3 苹果缺钙机制

3.1 品种和砧木类型与果实钙含量的关系

果树中的钙含量和钙在果实中的分布很大程度上受遗传调控,不同品种果实成熟时的钙浓度由高到低依次为:新红星>珊夏>粉红女士>千秋>嘎拉>红富士>红将军>新世界[21]。推测不同品种果实成熟时钙浓度与钙转运蛋白基因表达有关。李宝江等[35]通过对22个苹果品种的研究发现,不同品种之间的钙含量存在极显著差异,其中钙含量最低的品种(红玉)与最高的品种(富士)相差10.4倍。果梗是连接结果枝与果实的唯一通道,随着果实生长,果梗木质部结构逐渐被薄壁细胞挤压破坏,且果梗维管束的结构和功能逐渐衰退,影响果实钙吸收。斗南苹果果实维管束随着果实生长比富士苹果更早被破坏,功能更早丧失,影响了果实钙积累,导致斗南苹果果实钙含量低于富士苹果[17]。与富士苹果相比,卡塔琳娜苹果和蜜脆苹果的钙含量低,导致果实易得苦痘病。即使是相同品种,不同的砧穗组合,钙含量的差别也很大:以B9为砧木的富士新梢叶片、短枝叶和果实中的钙含量比以M9、M26、M27为砧木的高[9]。关军锋等[36]通过对以山丁子为根砧,以M26、MM106、M9为中间砧的金冠苹果钙含量进行分析,发现在果实采收初期MM106上的苹果果肉钙含量最高。

3.2 树体因子与果实钙含量的关系

与中庸树相比,树体生长过旺,枝条会与果实竞争钙,导致果实中的钙含量降低[37]。保持果树合理的负载量是控制果实生理病害的一条重要途径:与高负载量树相比,低负载量果树的果实中钙含量较低,包会英等[38]运用多元分析法研究了秦脆苹果苦痘病的发生规律,发现苦痘病发病率与强营养枝(0.54)、长秋梢数(0.43)呈极显著正相关,与挂果量(-0.43)呈极显著负相关。

苹果幼树的果实体积偏大,钙含量低,易发生钙稀释现象,果实易发生生理病害[39-40]。一般情况下,在苹果中,果柄钙浓度高于果肉钙浓度,且韧皮部钙含量高于木质部[41]。苹果果实生长初期,钙在果实中均匀分布,但随季节推移出现浓度差异,果皮中钙含量最高,果肉最低,种子与果心居中[42]。

3.3 施肥与果实钙含量的关系

施肥量、肥料元素的配比和施肥时期等施肥技术均与果实钙含量有重要关系。众所周知,肥料的使用提高了苹果的产量和商品率[43];然而不合理施肥会给苹果生产带来严重后果:施肥量低,不能充分发挥果树的潜力;施肥量过高会导致烧根等现象,影响苹果产量[44]。氮是蛋白质重要的组成成分,对提高果实品质有重要作用,生产过程中与施用硝态氮相比,施用铵态氮时,富士苹果苦痘病发生率较高[40];钾是果糖激酶、苹果酸脱氢酶等酶的激活剂,但过量使用钾肥会抑制果树对钙的吸收[45];镁是三磷酸腺苷(ATP)酶的激活剂,但镁与钙有拮抗作用,大量使用镁肥同样会抑制果树对钙的吸收,具有类似现象的还有锌[46]。而施硼肥不仅能促进果树对钙的吸收与运输,提高钙含量,而且能减少果实生理病害和贮藏期间的腐烂[47]。

3.4 果树修剪、果实套袋与果实钙含量的关系

果树修剪可以增强树势,延缓树体衰老,平衡生长势,提升优果率。在冬季对枝条更新修剪可以提高果实、叶片和枝条中的氮、磷、钾、钙含量[48]。树势过旺会降低花芽形成率、坐果率,导致果实品质下降。夏季修剪能通过去除生长旺盛的枝条,缓解植株郁闭来提高光合效率,合理夏剪还能通过减少枝条生长与果实对有效钙的竞争,促进果实钙积累,降低苹果苦痘病的发生率[49]。环剥能抑制地上部的光合同化物向地下部转运,促进生殖生长,且有利于花芽形成和提高坐果率,但环剥会抑制地下部生长,阻碍根系对钙等营养元素的吸收,最终导致果实钙含量降低[50]。苹果套袋可以极大地提高果实的外观品质,降低农药的用量,但会抑制苹果的蒸腾作用,减少果实钙积累[51]。此外,果实套袋后会影响钙在果实中的分布:套袋果实果皮中钙含量明显低于未套袋果实,而果肉和果心的钙含量却高于未套袋果实[52]。

4 预防苦痘病的措施

4.1 合理施肥

苹果的产量和品质直接影响果农的收入,而钙作为植物必需的矿质元素在苹果生产中扮演着重要角色,外施不同种类的钙肥均能够提高果实钙含量、改善果实品质[53]。王树桐等[54]指出:每生产1000 kg苹果,果树需要吸收氮2.5 kg、磷0.4 kg、钾3.2 kg、钙3.7 kg。果实中85%的钙来自于土壤,只有15%的钙从根外追肥中获得[55]。通过土壤施肥补钙是最为传统的办法,苹果园土壤在春、夏、秋3次施肥能显著增加土壤中总钙、交换性钙含量,显著提高成熟果实钙的浓度和钙积累量[56]。杨兰兰等[57]通过土施硝酸钙研究长富2号最佳的补钙措施,结果表明,在花前、落花后和果实膨大期分3次将硝酸钙(0.72 kg·株-1·次-1)施于果树根下的效果最佳。

不利的土壤因素,如土壤盐渍化、土壤温度过低会导致根系活力降低,影响苹果根系的钙吸收[58]。运输到木质部的钙离子在蒸腾拉力的带动下运往地上部,而植物幼嫩部位及果实的蒸腾速率较低,对钙的竞争小于叶片,加之钙在韧皮部中移动性较差,难以再运输和分配到新生部位及果实,因此果实容易发生缺钙现象[59]。叶面补钙作为一种快速、高效的补钙措施,对提高苹果品质和产量具有重要作用[60]。外源喷钙能有效抑制果实变软,维持细胞壁结构的稳定,提高果树的品质和抗逆性[43,61]。幼果期(落花后3~4周)叶面喷钙,苹果树对钙的吸收效率最高[62];Kalcsits等[63]通过44Ca示踪试验证实了幼果期蜜脆苹果果实对钙的吸收效率最高,随着果实生长,钙的吸收效率逐渐降低。虽然外施不同种类的钙肥能够提高果实钙含量,但不同钙肥应用效果不同,Ranjbar等[53]发现,与氯化钙(CaCl2)处理相比,纳米碳酸钙(CaCO3-nano)处理在改善苹果储藏期果实品质方面效果显著;杜英俊[64]研究表明糖醇钙800倍液补钙效果优于氨基酸钙;此外,在果实采收后使用2%糖醇钙浸泡果实15 min能显著提高果实硬度,延长苹果货架期[65]。在果实发育过程中使用氯化钙、纳米碳酸钙和糖醇钙等钙肥对提高果实中钙含量有积极作用。

近些年,越来越多的研究发现植物生长调节剂会影响果实钙积累。钙作为第二信使,广泛参与生长素(IAA)、赤霉素(GA)和ABA信号转导,调节果实发育和果实软化;而果实发育过程中的激素调节又可以影响钙在果实中的分布[37,66]。钙主要依靠木质部运输,生长素能改善植物木质部的功能和维管束的数量,增强苹果对钙的运输[67]。苹果花后喷施GA3会促进植物营养生长,导致营养器官与果实竞争钙,增加苹果患BP的风险,盛花后喷施GA抑制剂,抑制营养生长,则会降低果实中K、Mg、N含量,增加果实中Ca含量,从而降低发生BP的风险[68]。ABA可以通过降低植物的蒸腾作用效率和维持木质部功能促进果实的钙积累[69-70]。因此,在补钙同时添加IAA、ABA或GA抑制剂等激素会增加果实中钙含量。

4.2 农技措施

改善园区的栽培条件:通过秋季果园深耕、种植绿肥作物、增施有机肥等途径改善土壤理化性质,能促进团粒结构形成,还能改善根系通风透水性,保证根系正常的呼吸作用,促进根系对钙的吸收[71]。及时排灌:遇到旱情及时浇水,雨季注意排水,防止树下积水成涝,有利于提高养分有效性,还能保证根系正常生长,提高果实钙含量和品质[72-73]。合理修剪有利于保持良好的树体结构,改造过密园,减少枝量,能改善树体通风透光条件,同时可缓解生长过盛的营养器官与果实竞争养分,以免导致钙养分浪费[74]。

5 总结与展望

苹果苦痘病成为中国苹果产业发展的一大限制因素,降低苹果苦痘病的发生率、提高果实品质是果树学研究的一大热点问题。随着科技的发展,基因组学已经成为研究果树钙吸收转运机制的重要手段,而随着钙吸收转运机制的揭示,专家学者可以通过转基因、分子育种等途径促进钙转运蛋白基因表达,增强果树钙吸收,促进钙分配。微生物在土壤养分活化、促进植物生长等方面有重要作用,借助微生物菌或其分泌物来提高苹果钙含量是一项具有应用前景的科学研究课题[75]。果树中的钙主要依赖根系从土壤中获得,不同的砧穗组合对提升果树钙含量有显著差异[9]。未来的研究可通过搭配不同的砧穗组合来促进苹果钙吸收,提高钙利用率,降低苹果苦痘病发生率。激素对苹果钙吸收有重要影响,然而植物生长调节剂与钙肥复配对苹果钙积累的研究较少[67-70]。苹果对不同种类钙肥的吸收利用率不同,可进一步研发苹果吸收利用率高的肥料;套袋可以提高果实的品质,但果实套袋会通过影响果实蒸腾作用影响果实钙吸收,应进一步研究果实套袋的种类,减少因果实套袋对苹果钙吸收的影响[76]。笔者在本文中综述了钙与苹果苦痘病的关系、苹果苦痘病发生规律及防治策略的最新进展,为降低苹果苦痘病发生率与提高苹果果实品质提供理论支撑。综合治理、系统防控以获得最优的苹果钙营养,能更好地避免果实生理失调,改善果实采收期的物理性状。

参考文献References:

[1]   王金政,毛志泉,丛佩华,吕德国,马锋旺,任小林,束怀瑞,李保华,郭玉蓉,郝玉金,姜远茂,张新忠,杨欣,曹克强,赵政阳,韩振海,霍学喜,魏钦平. 新中国果树科学研究70年:苹果[J]. 果树学报,2019,36(10):1255-1263.

WANG Jinzheng,MAO Zhiquan,CONG Peihua,L? Deguo,MA Fengwang,REN Xiaolin,SHU Huairui,LI Baohua,GUO Yurong,HAO Yujin,JIANG Yuanmao,ZHANG Xinzhong,YANG Xin,CAO Keqiang,ZHAO Zhengyang,HAN Zhenhai,HUO Xuexi,WEI Qinping. Fruit scientific research in New China in the past 70 years:Apple[J]. Journal of Fruit Science,2019,36(10):1255-1263.

[2]   高仁生. 氮素对寒富苹果苦痘病发病率的影响[D]. 沈阳:沈阳农业大学,2020:2-20.

GAO Rensheng. Effect of nitrogen on the incidence of bitter pit of Hanfu apples[D]. Shenyang:Shenyang Agricultural University,2020:2-20.

[3]   秦永凤. ‘瑞阳苹果苦痘病发生与钙素营养关系研究[D]. 杨凌:西北农林科技大学,2021:3-16.

QIN Yongfeng. Study on the relationship between bitter pit of ‘Ruiyang apple and calcium nutrition[D]. Yangling:Northwest A & F University,2021:3-16.

[4]   杨兰兰,卢凯政,邹平,齐国辉,张雪梅,李寒,郭素萍. 苹果苦痘病与果实品质及矿质元素含量的相关性分析[J]. 经济林研究,2019,37(2):134-140.

YANG Lanlan,LU Kaizheng,ZOU Ping,QI Guohui,ZHANG Xuemei,LI Han,GUO Suping. Correlation analysis of apple bitter pit with fruit quality and mineral element contents in fruits[J]. Non-wood Forest Research,2019,37(2):134-140.

[5]   WANG G P,WANG J Z,HAN X P,CHEN R,XUE X M. Effects of spraying calcium fertilizer on photosynthesis,mineral content,sugar-acid metabolism and fruit quality of Fuji apples[J]. Agronomy,2022,12(10):2563.

[6]   秦永凤,梁俊,韩明明,何肖肖,赵政阳. ‘瑞阳苹果苦痘病的发生与主要营养元素含量的关系[J]. 果树学报,2020,37(12):1907-1913.

QIN Yongfeng,LIANG Jun,HAN Mingming,HE Xiaoxiao,ZHAO Zhengyang. A study on the relationship between occurrence of bitter pit and contents of main nutritional elements in ‘Ruiyang apple[J]. Journal of Fruit Science,2020,37(12):1907-1913.

[7]   VAL J,FERN?NDEZ V,L?PEZ P,PEIR? J M,BLANCO A. Low oxygen treatment prior to cold storage decreases the incidence of bitter pit in ‘Golden Reinders apples[J]. Journal of the Science of Food and Agriculture,2010,90(3):536-540.

[8]   TORRES E,RECASENS I,LORDAN J,ALEGRE S. Combination of strategies to supply calcium and reduce bitter pit in ‘Golden Delicious apples[J]. Scientia Horticulturae,2017,217:179-188.

[9]   CHUN I J,FALLAHI E,COLT W M,SHAFII B,TRIPEPI R R. Effects of rootstocks and microsprinkler fertigation on mineral concentrations,yield,and fruit color of ‘BC-2 Fuji apple[J]. Journal of the American Pomological Society,2002,56(1):4-13.

[10] 董宇,冯云霄,关军锋. ‘富士苹果痘斑病与Ca营养、分布和定位[J]. 中国农业科学,2013,46(18):3834-3841.

DONG Yu,FENG Yunxiao,GUAN Junfeng. Lenticel blotch pit and Ca nutrition,distribution and localization in ‘Fuji apple fruit[J]. Scientia Agricultura Sinica,2013,46(18):3834-3841.

[11] JEMRI? T,FRUK I,FRUK M,RADMAN S,SINKOVI? L,FRUK G. Bitter pit in apples:Pre- and postharvest factors:a review[J]. Spanish Journal of Agricultural Research,2016,14(4):e08R01.

[12] KUDLA J,BATISTI? O,HASHIMOTO K. Calcium signals:The lead currency of plant information processing[J]. The Plant Cell,2010,22(3):541-563.

[13] DO AMARANTE C V T,CHAVES D V,ERNANI P R. Composi??o mineral e severidade de ‘Bitter pit em ma??s ‘Catarina[J]. Revista Brasileira De Fruticultura,2006,28(1):51-54.

[14] LARRIGAUDI?RE C,GIN?-BORDONABA J. Oxidative stress and physiological disorders[M]//DE FREITAS S T,PAREEK S. Postharvest physiological disorders in fruits and vegetables. Boca Raton:Taylor & Francis,CRC Press,2019:29-60.

[15] ZHANG D,GE S F,WANG C,JIANG Y M,LI X L,XIA S J,HE J Z,YAO J,ZHANG J N,WANG X Y. The relationship between soil bacteria and metal nutrient availability for uptake of apple trees in Chinese orchards[J]. Plant Growth Regulation,2020,92(2):181-193.

[16] MIQUELOTO A,DO AMARANTE C V T,STEFFENS C A,DOS SANTOS A,MITCHAM E. Relationship between xylem functionality,calcium content and the incidence of bitter pit in apple fruit[J]. Scientia Horticulturae,2014,165:319-323.

[17] JING J Y,XU X,FU W H,ZHANG H,QU S C,WANG S H. Difference in calcium accumulation in the fruit of two apple varieties and its relationship with vascular bundle development in the pedicel[J]. Plant Physiology and Biochemistry,2023,201:107833.

[18] SCHLEGEL T K,SCH?NHERR J. Stage of development affects penetration of calcium chloride into apple fruits[J]. Journal of Plant Nutrition and Soil Science,2002,165(6):738-745.

[19] 陈见晖,周卫. 苹果缺钙对果实钙组分、亚细胞分布与超微结构的影响[J]. 中国农业科学,2004,37(4):572-576.

CHEN Jianhui,ZHOU Wei. Effect of calcium deficiency in apple (Malus pumila) fruits on calcium fractions,subcelluar distribution and ultrastructure of pulp cells[J]. Scientia Agricultura Sinica,2004,37(4):572-576.

[20] TAHIR I. Control of pre-and postharvest factors to improve apple quality and storability[D]. Sverige:Swedish University of Agricultural Sciences,2006:38-40.

[21] 郑伟尉,陈锋,翟衡,徐月华,张静. 几种因素对富士苹果钙组分的影响[J]. 果树学报,2006,23(3):317-321.

ZHENG Weiwei,CHEN Feng,ZHAI Heng,XU Yuehua,ZHANG Jing. Effects of several factors on calcium compounds of Fuji apple[J]. Journal of Fruit Science,2006,23(3):317-321.

[22] 王建国,宋宇琴,吴国良. 苹果树的钙营养及补钙技术综述[J]. 中国农学通报,2006,22(8):373-376.

WANG Jianguo,SONG Yuqin,WU Guoliang. The calcium nutrition and calcium treatments of apple tree[J]. Chinese Agricultural Science Bulletin,2006,22(8):373-376.

[23] WATKINS C B. Postharvest physiological disorders of fresh crops[M]// THOMAS B,MURRAY B G,MURPHY D J. Encyclopedia of applied plant sciences. 2nd Ed. New York,USA:Academic Press,2017:315-322.

[24] 汪良驹,姜卫兵,何岐峰,范黄斌. 苹果苦痘病的发生与钙、镁离子及抗氧化酶活性的关系[J]. 园艺学报,2001,28(3):200-205.

WANG Liangju,JIANG Weibing,HE Qifeng,FAN Huangbin. Studies on the relationship of the development of bitter pit in apple fruits with the contents of calcium and magnesium and the activities of antioxidant enzymes[J]. Acta Horticulturae Sinica,2001,28(3):200-205.

[25] 王晓燕,杭波,刘成连,原永兵,李培环,王永章. 套袋苹果果实中钙素分布及抗氧化酶活性与苦痘病关系的研究[J]. 安徽农业科学,2010,38(4):2197-2199.

WANG Xiaoyan,HANG Bo,LIU Chenglian,YUAN Yongbing,LI Peihuan,WANG Yongzhang. Study on the distribution of Ca in bagged apple fruit and relationship between antioxidant enzyme activity and bitter pit disease[J]. Journal of Anhui Agricultural Sciences,2010,38(4):2197-2199.

[26] 靖吉越,王三红. 园艺植物细胞内钙稳态调控机制研究进展[J]. 植物生理学报,2023,59(1):13-20.

JING Jiyue,WANG Sanhong. Research progress on the regulation mechanism of intracellular calcium homeostasis in horticultural plants[J]. Plant Physiology Journal,2023,59(1):13-20.

[27] WHITE P J. The pathways of calcium movement to the xylem[J]. Journal of Experimental Botany,2001,52(358):891-899.

[28] MOORE C A,BOWEN H C,SCRASE-FIELD S,KNIGHT M R,WHITE P J. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling[J]. The Plant Journal,2002,30(4):457-465.

[29] ALCOCK T D,THOMAS C L,LOCHLAINN S ?,PONGRAC P,WILSON M,MOORE C,REYT G,VOGEL-MIKU? K,KELEMEN M,HAYDEN R,WILSON L,STEPHENSON P,?STERGAARD L,IRWIN J A,HAMMOND J P,KING G J,SALT D E,GRAHAM N S,WHITE P J,BROADLEY M R. Magnesium and calcium overaccumulate in the leaves of a schengen 3 mutant of Brassica rapa[J]. Plant Physiology,2021,186(3):1616-1631.

[30] 杨洪强,张连忠,戚金亮,接玉玲. 苹果砧木根系钙素吸收动力学研究[J]. 园艺学报,2003,30(3):253-257.

YANG Hongqiang,ZHANG Lianzhong,QI Jinliang,JIE Yuling. The kinetics of calcium uptake in apple rootstock roots[J]. Acta Horticulturae Sinica,2003,30(3):253-257.

[31] XING Y,DU X,XU X X,WANG F,JIANG Y,TIAN G,ZHU Z L,GE S F,JIANG Y M. A balance between calcium and nitrate promotes the growth of M9T337 apple rootstocks[J]. Scientia Horticulturae,2022,300:111063.

[32] YANG H,JIE Y,SHAO X. Regulation of calcium uptake and translocation in plants[C]//ROBINSON T. Ⅸ International symposium on integrating canopy,rootstock and environmental physiology in orchard systems 903,ISHS,2008:1011-1016.

[33] YANG J,LI W H,GUO X,CHEN P H,CHENG Y P,MAO K,MA F W. Cation/Ca2+ exchanger 1 (MdCCX1),a plasma membrane-localized Na+ transporter,enhances plant salt tolerance by inhibiting excessive accumulation of Na+ and reactive oxygen species[J]. Frontiers in Plant Science,2021,12:746189.

[34] LOGAN D C,KNIGHT M R. Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants[J]. Plant Physiology,2003,133(1):21-24.

[35] 李宝江,林桂荣,刘凤君. 矿质元素含量与苹果风味品质及耐贮性的关系[J]. 果树科学,1995,12(3):141-145.

LI Baojiang,LIN Guirong,LIU Fengjun. Relationship between fruit quality,storability and mineral composition of apples[J]. Journal of Fruit Science,1995,12(3):141-145.

[36] 关军锋,SAURE M. 果树钙素营养与生理[M]. 北京:科学出版社,2005.

GUAN Junfeng,SAURE M. Calcium nutrition and physiology of fruit trees[M]. Beijing:Science Press,2005.

[37] SAURE M C. Calcium translocation to fleshy fruit:Its mechanism and endogenous control[J]. Scientia Horticulturae,2005,105(1):65-89.

[38] 包会英,张瑞,李露露,郝心茹,姚嘉丽,周会玲. ‘秦脆苹果苦痘病发生规律研究[J/OL].西北农业学报,2023,1-7(2023-10-12) [2024-01-08]. https://link.cnki.net/urlid/61.1220.S.20231010.1051.002.

BAO Huiying,ZHANG Rui,LI Lulu,HAO Xinru,YAO Jiali,ZHOU Huiling. Study on the occurrence pattern of bitter pox disease in ‘Qin Cui apple[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2023,1-7(2023-10-12) [2024-01-08]. https://link.cnki.net/urlid/61.1220.S.20231010.1051.002.

[39] WATKINS C,SCHUPP J,ROSENBERGER D. Calcium nutrition and control of calcium-related disorders[J]. New York Fruit Quarterly,2004,12(2):15-21.

[40] WOJCIK P P. Nutrition and calcium fertilization of apple trees[M]//DRIS R,JAIN S M. Production practices and quality assessment of food crops. Dordrecht,Netherlands:Kluwer Academic Publishers,2005:111-128.

[41] 宋雯佩. 果实摄取钙的规律、途径及调控机理的研究[D]. 广州:华南农业大学,2018.

SONG Wenpei. The study of fruit calcium uptake pattern,pathways and regulatory mechanisms[D]. Guangzhou:South China Agricultural University,2018.

[42] WILSDORF R. Evaluating the seasonal changes in calcium concentration and distribution in apple fruit after application of different calcium fertilisation strategies[D]. Stellenbosch:Stellenbosch University,2011:1-13.

[43] 赵佐平,同延安,高义民,付莹莹. 不同肥料配比对富士苹果产量及品质的影响[J]. 植物营养与肥料学报,2009,15(5):1130-1135.

ZHAO Zuoping,TONG Yanan,GAO Yimin,FU Yingying. Effect of different fertilization on yield and quality of Fuji apple[J]. Plant Nutrition and Fertilizer Science,2009,15(5):1130-1135.

[44] PAHALVI H N,RAFIYA L,RASHID S,NISAR B,KAMILI A N. Chemical fertilizers and their impact on soil health[M]//DAR G H,BHAT R A,MEHMOOD M A,HAKEEM K R,HAKEEM K R. Microbiota and Biofertilizers,Vol 2. Cham:Springer International Publishing,2021:1-20.

[45] DILMAGHANI M R,MALAKOUTI M J,NEILSEN G H,FALLAHI E. Interactive effects of potassium and calcium on K/Ca ratio and its consequences on apple fruit quality in calcareous soils of Iran[J]. Journal of Plant Nutrition,2005,27(7):1149-1162.

[46] BRUNETTO G,DE MELO G W B,TOSELLI M,QUARTIERI M,TAGLIAVINI M. The role of mineral nutrition on yields and fruit quality in grapevine,pear and apple[J]. Revista Brasileira De Fruticultura,2015,37(4):1089-1104.

[47] NEILSEN G H,NEILSEN D,PERYEA F J,FALLSHI E,FALLAHI B. Effects of mineral nutrition on fruit quality and nutritional disorders in apples[C]//PESTANA M,CORREIA P J. Ⅵ International Symposium on Mineral Nutrition of Fruit Crops 868,ISHS,2008:49-60.

[48] 李明霞,白岗栓,闫亚丹,耿桂俊,杜社妮. 山地苹果树更新修剪对树体营养及生长的影响[J]. 园艺学报,2011,38(1):139-144.

LI Mingxia,BAI Gangshuan,YAN Yadan,GENG Guijun,DU Sheni. Effects of renewal pruning on mountain apple trees nutrition and growth[J]. Acta Horticulturae Sinica,2011,38(1):139-144.

[49] NAIRA A,MOIEZA A. Summer pruning in fruit trees[J]. African Journal of Agricultural Research,2014,9(2):206-210.

[50] ELIWA G I,ASHOER N E,ALI M M. Effect of girdling and foliar application with some sources of potassium and calcium on fruit drop,yield and fruit quality of persimmon trees[J]. Egyptian Journal of Horticulture,2003,30(3/4):239-251.

[51] 赵同生,于丽辰,焦蕊,许长新,郝宝锋. 钙素营养与套袋苹果苦痘病的关系[J]. 果树学报,2007,24(5):649-652.

ZHAO Tongsheng,YU Lichen,JIAO Rui,XU Changxin,HAO Baofeng. Study on the relationship between calcium nutrition and bitter pit in bagged apples[J]. Journal of Fruit Science,2007,24(5):649-652.

[52] 李方杰,王磊,刘成连,原永兵,李培环,王永章. 套袋对苹果果实钙素吸收与分布的影响[J]. 果树学报,2007,24(4):517-520.

LI Fangjie,WANG Lei,LIU Chenglian,YUAN Yongbing,LI Peihuan,WANG Yongzhang. Effects of bagging on calcium absorption and distribution in apple fruit[J]. Journal of Fruit Science,2007,24(4):517-520.

[53] RANJBAR S,RAHEMI M,RAMEZANIAN A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious[J]. Scientia Horticulturae,2018,240:57-64.

[54] 王树桐,王亚南,曹克强. 近年我国重要苹果病害发生概况及研究进展[J]. 植物保护,2018,44(5):13-25.

WANG Shutong,WANG Yanan,CAO Keqiang. Occurrence of and research progress in important apple diseases in China in recent years[J]. Plant Protection,2018,44(5):13-25.

[55] 李鹏,李春越,王益权,焦彩强. 施肥方式和园龄对洛川苹果园土壤钙素退化的影响[J]. 应用生态学报,2017,28(5):1611-1618.

LI Peng,LI Chunyue,WANG Yiquan,JIAO Caiqiang. Effects of fertilizing regime and planting age on soil calcium decline in Luochuan apple orchards[J]. Chinese Journal of Applied Ecology,2017,28(5):1611-1618.

[56] 陈锋,秦栋,厉恩茂,翟衡. 分期施肥对富士苹果钙素吸收的影响[J]. 果树学报,2008,25(5):630-634.

CHEN Feng,QIN Dong,LI Enmao,ZHAI Heng. Effects of repeated fertilization on the absorption of calcium of Fuji apple tree[J]. Journal of Fruit Science,2008,25(5):630-634.

[57] 杨兰兰,卢凯政,齐国辉,张雪梅,李寒,郭素萍. 提高苹果品质并抑制苦痘病发生的钙肥最佳施用量和次数[J]. 植物营养与肥料学报,2020,26(4):765-772.

YANG Lanlan,LU Kaizheng,QI Guohui,ZHANG Xuemei,LI Han,GUO Suping. Optimum application amount and times of calcium nitrate for better fruit quality and lower incidence of apple bitter pit[J]. Journal of Plant Nutrition and Fertilizers,2020,26(4):765-772.

[58] 查仁明,许雪峰. NaCl胁迫对苹果属植物矿质营养吸收的影响[J]. 中国果树,2001(4):11-14.

ZHA Renming,XU Xuefeng. Effect of NaCl stress on mineral nutrient uptake in apple plants[J]. China Fruits,2001(4):11-14.

[59] WHITE P J,BROADLEY M R. Calcium in plants[J]. Annals of Botany,2003,92(4):487-511.

[60] SALA F,IORDANESCU O,DOBREI A,JIVAN C. Contribution of foliar fertilization and calcium supplement in achieving apple production[J]. Journal of Horticulture,Forestry and Biotechnology,2014,18(2):151-157.

[61] CYBULSKA J,ZDUNEK A,KONSTANKIEWICZ K. Calcium effect on mechanical properties of model cell walls and apple tissue[J]. Journal of Food Engineering,2011,102(3):217-223.

[62] 周卫,汪洪,赵林萍,林葆. 苹果(Malus pumila)幼果钙素吸收特性与激素调控[J]. 中国农业科学,1999,32(3):52-58.

ZHOU Wei,WANG Hong,ZHAO Linping,LIN Bao. Characteristics of calcium absorption and hormone regulation in young apple (Malus pumila) fruit[J]. Scientia Agricultura Sinica,1999,32(3):52-58.

[63] KALCSITS L,VAN DER HEIJDEN G,REID M,MULLIN K. Calcium absorption during fruit development in ‘Honeycrisp apple measured using 44Ca as a stable isotope tracer[J]. HortScience,2017,52(12):1804-1809.

[64] 杜英俊. 不同苹果品种钙含量差异及‘蜜脆苹果补钙方法研究[D]. 杨凌:西北农林科技大学,2021.

DU Yingjun. Study on the difference of calcium content in apples varieties and the method of supplementing calcium in ‘Honeycrisp[D]. Yangling:Northwest A & F University,2021.

[65] 裴健翔,李燕青,程存刚,李壮. 不同钙制剂对‘寒富苹果果实硬度及相关细胞壁代谢物质的影响[J]. 果树学报,2018,35(9):1059-1066.

PEI Jianxiang,LI Yanqing,CHENG Cungang,LI Zhuang. Effects of different calcium agents on fruit firmness and related cell wall metabolites in ‘Hanfu apple[J]. Journal of Fruit Science,2018,35(9):1059-1066.

[66] HOCKING B,TYERMAN S D,BURTON R A,GILLIHAM M. Fruit calcium:transport and physiology[J]. Frontiers in Plant Science,2016,7:569.

[67] GRIFFITH C,EINHORN T C. The effect of plant growth regulators on xylem differentiation,water and nutrient transport,and bitter pit susceptibility of apple[J]. Scientia Horticulturae,2023,310:111709.

[68] AMARANTE C V T,STEFFENS C A,DE FREITAS S T,SILVEIRA J P G,DENARDI V,KATSURAYAMA J M. Post bloom spraying apple trees with prohexadione-calcium and gibberellic acid affects vegetative growth,fruit mineral content and bitter pit incidence[J]. Acta Horticulturae,2020,1275:193-200.

[69] KALCSITS L,VAN DER HEIJDEN G,WALIULLAH S,GIORDANI L. S-ABA-induced changes in root to shoot partitioning of root-applied 44Ca in apple (Malus domestica Borkh.)[J]. Trees,2019,33(2):433-442.

[70] ANGMO T S,REHMAN M U,MIR M M,BHAT B H,AHMAD BHAT S,KOSSER S,AHAD S,SHARMA A. Abscisic acid application regulates vascular integrity and calcium allocation within apple fruits[J]. Canadian Journal of Plant Science,2022,102(5):964-972.

[71] 李会科,张广军,赵政阳,李凯荣. 生草对黄土高原旱地苹果园土壤性状的影响[J]. 草业学报,2007,16(2):32-39.

LI Huike,ZHANG Guangjun,ZHAO Zhengyang,LI Kairong. Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the Loess Plateau[J]. Acta Prataculturae Sinica,2007,16(2):32-39.

[72] 王进鑫,张晓鹏,高保山,王健. 渭北旱塬矮化富士苹果幼树N,K营养状况分析[J]. 西北农林科技大学学报(自然科学版),2004,32(10):20-24.

WANG Jinxin,ZHANG Xiaopeng,GAO Baoshan,WANG Jian. N and K nutrient status of dwarfing Red Fuji apple young tree under different fertilizer and irrigation conditions[J]. Journal of Northwest A & F University (Natural Science Edition),2004,32(10):20-24.

[73] 穆家壮,徐孙霞,薄海丰,陈家伟,王三红,渠慎春. 土壤水分对富士苹果果实外观品质的影响[J]. 西北植物学报,2023,43(1):88-96.

MU Jiazhuang,XU Sunxia,BO Haifeng,CHEN Jiawei,WANG Sanhong,QU Shenchun. Effect of soil moisture on the fruit appearance quality of Fuji apple[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(1):88-96.

[74] 白岗栓,杜社妮. 陕北丘陵沟壑区苹果优质丰产栽培体系研究[J]. 水土保持通报,2000,20(2):32-35.

BAI Gangshuan,DU Sheni. Apple cultivation system for top quality and high production in loess hilly-gully region of northern Shaanxi Province[J]. Bulletin of Soil and Water Conservation,2000,20(2):32-35.

[75] FU W H,YAN M Y,ZHAO L,ZENG X Q,CAI B H,QU S C,WANG S H. Inoculation with arbuscular mycorrhizal fungi increase calcium uptake in Malus robusta[J]. Scientia Horticulturae,2023,321:112295.

[76] 文颖强,马锋旺. 我国苹果套袋技术应用与研究进展[J]. 西北农林科技大学学报(自然科学版),2006,34(2):100-104.

WEN Yingqiang,MA Fengwang. An advance in application and study of apple bagging technology in China[J]. Journal of Northwest A & F University (Natural Science Edition),2006,34(2):100-104.

猜你喜欢
防治技术苹果
第一个大苹果
收获苹果
商洛核桃举肢娥防治技术
拿苹果
煤矿煤与瓦斯突出防治技术分析
会说话的苹果