符安宗 李成禄 石国明 杨文鹏 杨元江 郑博 李金明
符安宗,李成祿,石国明,等.黑龙江多宝山地区晚泥盆世A型花岗斑岩年代学、地球化学特征
及其地质意义.吉林大学学报(地球科学版),2024,54(3):811827.doi:10.13278/j.cnki.jjuese.20220262.
Fu Anzong,Li Chenglu,Shi Guoming,et al. Geochronology, Geochemistry and Geological Significance of the Late Devonian AType Granite Porphyry in the Duobaoshan Area, Heilongjiang Province. Journal of Jilin University (Earth Science Edition),2024,54(3):811827.doi:10.13278/j.cnki.jjuese.20220262.
摘要:
黑龙江多宝山地区位于兴蒙造山带东段,为兴安地块与松嫩地块的拼合部位,是研究嫩江—黑河洋(古亚洲洋分支)构造演化的关键地段。对嫩江市多宝山地区西侧出露的花岗斑岩开展岩石学、年代学和元素地球化学等方面的研究,以期限定其形成时代,探讨岩石成因及构造背景,为嫩江—黑河洋构造岩浆演化提供依据。花岗斑岩呈肉红色,具多斑状结构,块状构造,斑晶由钾长石、石英和少量的斜长石组成,基质主要由微晶结构的长英质矿物和少量黑云母组成。LAICPMS锆石UPb加权平均年龄为(365.1±2.6)Ma,形成于晚泥盆世晚期。岩石地球化学具有高质量分数的SiO2、K2O,低质量分数的CaO、MgO和Al2O3,高TFeO/MgO和Rb/Sr值,富集Rb、Th、Zr和Hf元素,贫Sr、Ba、Eu、Ti和P元素,REE配分曲线呈燕式分布,负铕异常明显,表现出A型花岗岩的特征。以高的Zr/Hf值,Na2O、TFeO质量分数和相对低的P2O5、Rb质量分数区别于高分异I型、S型花岗岩。特征微量元素比值与大陆地壳相应值相近,且岩石具有较低的MgO、Cr质量分数和Mg#值,指示其源区主要来自地壳。综合分析表明,该期花岗斑岩为非典型A1亚类花岗岩,兼具火山弧和板内花岗岩的元素地球化学特征,形成于嫩江—黑河洋北向俯冲挤压体系下派生的局部拉张环境。
关键词:
晚泥盆世;锆石UPb年龄;地球化学;A型花岗岩;花岗斑岩;黑龙江多宝山地区
doi:10.13278/j.cnki.jjuese.20220262
中图分类号:P59;P588.12
文献标志码:A
收稿日期:20220917
作者简介:符安宗(1986—),男,工程师,硕士,主要从事区域地质矿产调查方面的研究,E-mail:116861157@qq.com
基金项目:黑龙江省重点研发计划项目(GA21A204);黑龙江省地质矿产局科研项目(HKY202302);中国地质调查局项目(DD2016004707)
Supported by the Key R&D Project in Heilongjiang Province (GA21A204), the Research Projects of Bureau of Geology & Mineral Resource of Heilongjiang Province (HKY202302) and the Project of China Geological Survey (DD2016004707)
Geochronology, Geochemistry and Geological Significance of the Late Devonian AType Granite Porphyry in the Duobaoshan Area, Heilongjiang Province
Fu Anzong,Li Chenglu,Shi Guoming,Yang Wenpeng,Yang Yuanjiang,Zheng Bo,Li Jinming
Heilongjiang Institute of Natural Resources Survey,Harbin 150036, China
Abstract:
The Duobaoshan area, situated within the contact zone between the Xingan and Songnen blocks in the eastern part of Xingan-Mongolia orogenic belt, holds significant importance in the study the tectonic evolution of Nenjiang-Heihe Ocean, which is the north branch of Paleo-Asian Ocean. In this paper, we present a detailed investigation of petrology, geochronology and geochemistry of the granite porphyries exposed in the western Duobaoshan area with the aims to identify their geochronology and petrogenesis, and further to reveal the tectonic-magmatic evolution associated with the Nenjiang-Heihe Ocean. The investigated granite porphyries are flesh red, with multi porphyry structure and massive structure. Their phenocrysts predominantly comprise potassium feldspar, quartz and a small amount of plagioclase. The matrix is mainly composed of felsic minerals with microcrystalline structure and minor biotites. The LAICPMS UPb zircon age suggest the granite porphyry formed at Late Devonian (365.1 ± 2.6 Ma). Moreover, the granite porphyries are geochemically characterized by high SiO2 and K2O contents, along with low CaO, MgO and Al2O3 compositions, and high TFeO/MgO and Rb/Sr ratios. They are enriched in Rb, Th, Zr and Hf, and depleted in Sr, Ba, Eu, Ti, P, with swallow-like REE patterns and negative Eu anomalies, showing the characteristics of Atype granite. Distinguished from highly differentiated Itype and Stype granites, they display a high Zr/Hf ratio, Na2O, TFeO content and relatively low P2O5, Rb content. The low MgO, and Cr contents and Mg# values, together with their characteristic trace element ratios, indicated the predominant crustal source contribution. Based on the regional geology and the geochemical characteristics of the studied rocks, we concluded that the granite porphyry is an A1 subtype granite, which has the geochemical characteristics of both volcanic arc and intraplate granite. Furthermore, we infer that the granite porphyry should be formed in the local extensional environment during the northward subduction of Nenjiang-Heihe Ocean.
Key words:
Late Devonian; zircon UPb age; geochemistry; Atype granite; granite porphyry; the Duobaoshan area, Heilongjiang Province
0 引言
黑龙江多宝山地区位于大兴安岭与小兴安岭结合部,属兴蒙造山带东段,为兴安地块和松嫩地块的拼合部位,
自古生代以来经历了古亚洲洋、环太平洋、蒙古—鄂霍茨克洋三大构造域的地质构造演化[13],构造岩浆活动频繁,成矿地质作用复杂。该地区目前已发现多宝山斑岩型铜钼矿床、铜山斑岩型铜矿床、三矿沟矽卡岩型铁矿床、争光低温热液型金矿床和二道坎低温热液型银矿床等,成矿潜力巨大。特别是黑龙江省首个大型独立银矿二道坎银矿床的发现,为多宝山地区增加了新的找矿方向。因此,查清多宝山地区成矿地质背景尤为重要。近年来,众多学者围绕上述矿床及其外围开展了较为详尽的研究,报道了多期构造岩浆事件,基本理清了多宝山地区成矿地质背景[312]。然而该地区晚泥盆世岩浆事件未见报道,其地质构造演化缺乏晚泥盆世岩浆记录,该时期地质构造背景尚不明确。
A型花岗岩富硅富碱贫水,地球化学上以贫Al、Sr、Eu、Ba、Ti、P等为特征,形成于低压高温条件下,大多产于伸展环境或挤压、剪切体制下派生的局部拉张环境[1317]。尽管A型花岗岩类仅占花岗岩类的一小部分,但该类花岗岩具有重要的地球化学意义,探讨其产出的动力学背景可以限定区域构造演化[18]。
鉴于此,本文在多宝山地区1∶5万区域地质调查工作的基础上,通过对新发现的A型花岗斑岩进行详细的岩石学、年代学和元素地球化学研究,准确量定其形成时代,揭示其岩石成因,探讨其构造环境,为研究多宝山地区晚泥盆世构造环境及嫩江—黑河洋的构造演化提供新的可靠素材和地质依据,进一步完善多宝山地区的成矿地质背景。
1 地质概况
研究区位于黑龙江省嫩江市多宝山地区西侧,属兴蒙造山带东段兴安地块东北边缘(图1a),经历了三大构造域的叠加演化,岩浆活动强烈,变质作用复杂,发育古生代弧盆系火山沉积建造、岩浆弧和中生代火山沉积盆地[21]。
研究区古生代海相火山沉积地层和中生代陆相火山沉积地层发育,地层由老到新依次为:下—中奥陶统铜山组(O12t)浅海—半深海—深海陆源碎屑沉积岩夹火山碎屑岩、多宝山组(O12d)岛弧型钙碱性火山岩夹大理岩透镜体,上奥陶统裸河组(O3l)浅海—滨海相沉积岩夹凝灰岩和结晶灰岩透镜体、爱辉组(O3ah)浅海—半深海相沉积岩,下志留统黄花沟组(S1h)浅海—半深海相沉积岩,中志留统八十里小河组(S2b)浅海相沉积岩夹火山岩,上志留统卧都河组(S3w)浅海—滨海相沉积岩,下泥盆统泥鳅河组(D1n)浅海相沉积岩夹火山岩,中—上泥盆统根里河组(D23g)浅海相沉积岩,上石炭统—下二叠统宝力高庙组(C2P1bl)中酸性陆相火山岩夹正常沉积碎屑岩,下白垩统龙江组(K1l)陆相中性火山岩、光华组(K1gn)陆相酸性火山岩、九峰山组(K1j)山间半地堑式断陷盆地沉积岩、甘河组(K1g)陆相基性火山岩和第四系冲洪积物。区域上岩浆活动频繁,由老到新发育中奥陶世花岗闪长岩和花岗闪长斑岩、早石炭世正长花岗岩、晚石炭世—早二叠世碱长花岗岩、中—晚三叠世花岗闪长岩、早侏罗世闪长岩、中侏罗世花岗闪长岩和二长花岗岩。
本文研究的花岗斑岩呈不规则小岩株状产出,总体呈近北北东向展布,出露面积约10 km2,侵位于下—中奥陶统铜山组海相沉积岩中,被上石炭统—下二叠统宝力高庙组陆相火山岩不整合覆盖(图1b)。其岩相学特征揭示:岩石呈肉红色,具多斑状结构,块状构造。岩石由斑晶和基质组成,斑晶约占岩石的50%(图2)。斑晶由钾长石、石英和少量的斜长石组成,粒径多为0.5~4.0 mm。钾长石呈半自形柱状、粒状,负低突起,平行消光,具黏土化,体积分数约为25%;石英呈他形粒状、熔蚀斑状,晶面平坦,波状消光,裂纹发育,体积分数约为20%;斜长石呈半自形柱状,具聚片双晶,成分为更长石,绢云母化发育,体积分数约为5%。基质主要由微晶结构的长英质矿物和少量黑云母组成,黑云母具绿泥石化、白云母化,部分黑云母镶嵌在长石、石英斑晶上,斜长石具绢云母化,钾长石具黏土化。副矿物为磁铁矿、锆石。
2 分析方法
本文对1件样品进行锆石UPb法年龄测定,对5件样品进行岩石地球化学分析测试。样品较为新鲜,采样位置见图1b和表1。
锆石UPb测年:在野外采集新鲜岩石样品,选送至河北省区域地质矿产调查研究所实验室进行单矿物锆石分选工作。以常规方法将样品粉碎至80~100目,并用淘洗、电磁选等方法进行单矿物锆石分选;然后在双目镜下挑选透明度较好、晶形较完好、裂纹和包体较少的锆石用于UPb年龄测定。锆石制靶、阴极发光(CL)图像的采集由北京锆年领航科技有限公司完成。锆石UThPb同位素分析在中国地质调查局天津地质调查中心完成。锆石UThPb分析在天津地质调查中心LAMCICPMC仪器上完成,所用仪器由NEW WAVE 193 nm FX激光器和NEPTUNE型多接收等离子质谱组成,激光剥蚀的斑束直径为35 μm,能量密度为13~14 J/cm2,频率为8~10 Hz,采用91500和GJ1标准锆石作为锆石定年外标,详细的实验原理和测试方法见参考文献[22]。采用Liu等[23]研发的ICPMSDataCAl程序和Ludwig[24]的Isoplot程序进行数据处理、年龄谐和图绘制和加权平均年龄计算,利用NIST SRM 612玻璃标样作为外标计算锆石样品的Pb、U、Th质量分数。
主量、微量和稀土元素分析测试:在野外采集新鲜岩石样品,選送不含包体和岩脉的样品送至自然资源部哈尔滨矿产资源监督检测中心进行岩石地球化学分析测试。其中主量元素分析采用X射线荧光光谱仪(XRF)完成,所用仪器型号为PW2400/40型,分析误差优于5%;微量元素和稀土元素分析采用电感耦合等离子体质谱法(ICPMS)测定,所用仪器型号为X SeriesⅡ型,分析误差优于10%,具体分析测试流程详见参考文献[25]。
3 测试结果
3.1 LAICPMS锆石UPb年龄
本次研究对多宝山地区1个花岗斑岩样品(039UPb95)进行了LAICPMS锆石UPb同位素测年,测试结果见表2。CL阴极发光图像(图3)显示用于测试的锆石内部结构清晰,为自形—半自形晶体,以短柱状、等轴状为主,少数锆石因溶蚀形态不规则,粒径大小多在90~180 μm之间,长宽比在2∶1~1∶1之间。阴极发光图像中大多数锆石可见明显的岩浆韵律环带结构,Th/U值较高,介于0.33~0.64之间,具典型岩浆成因锆石特征[26]。
样品039UPb95共测试25个锆石点,其中有4个点(9、16、21、23点)的谐和度小于90%,偏离谐和线,可能发生了204Pb的丢失,所以未参与锆石年龄的计算;3个点(4、19、22点)的206Pb/238U年龄在392~388 Ma之间,明显大于其他18个锆石点的年龄,可能为捕获锆石,因此未参与锆石年龄的计算;其他18个锆石点位于UPb谐和线上及其附近(图4),206Pb/238U年龄为374~356 Ma,206Pb/238U加权平均年龄为(365.1±2.6)Ma(n=18,MSWD=0.83),时代为晚泥盆世晚期。所有锆石点207Pb/206Pb值非常接近,变化于0.051 4~0.060 3之间,表明该批锆石为同期岩浆锆石。因此,该加权平均年龄代表本次研究的花岗斑岩结晶年龄,其形成于晚泥盆世晚期。
3.2 岩石地球化学特征
本次研究于多宝山地区共采集花岗斑岩5件新鲜岩石样品用于岩石地球化学分析,其主量、微量和稀土元素分析结果列于表3。
从表3可以看出,研究区花岗斑岩样品具有高硅(w(SiO2)=73.38%~77.12%)、高钾(w(K2O) =4.73%~5.43%)、富碱(w(Na2O+K2O)=7.58%~9.02%)、低钛(w(TiO2)=0.09%~0.20%)、低钙(w(CaO) =0.18%~0.44%)、贫镁(w(MgO)=0.04%~0.12%)、低Al2O3(w(Al2O3)=11.87%~13.64%)和高TFeO/MgO值(12.37~49.49)的地球化学特征。在R2R1图解(图5a)中,所有样品均落入碱性花岗岩区域。花岗斑岩的AR值介于2.61~3.22之间,属碱性系列(图5b);在w(K2O)w(SiO2)图解(图5c)中落入高钾钙碱性系列;在w(Na2O+K2O-CaO)w(SiO2)图解(图5d)中落入碱性系列和碱钙性系列;在TFeO/(TFeO+MgO)w(SiO2)图解(图5e)中落入铁质(Fenoan)区域;在A/NKA/CNK图解(图5f)上落入过铝质区域,属弱过铝质花岗岩;在(Al2O3+CaO)/(TFeO+Na2O+K2O)100(MgO+TFeO+TiO2)图解(图5g)上除1个点落入高分异花岗岩区域外,其余4个点均落入碱性花岗岩区域。
样品中稀土总量较高且变化较大,w(∑REE)=(144.67~388.93)×10-6,平均值为296.68×10-6;相对富集轻稀土元素,亏损重稀土元素,LREE/HREE值除1个样品为4.82外,其余为19.52~
34.05,平均值为21.54;(La/Yb)N为17.84~51.85(仅1个样品为3.92),平均值为26.09,在稀土元素配分曲线图上呈富LREE的右倾型曲线(图6a);(La/Sm)N=2.65~9.66(平均值为6.23), (Gd/Yb)N=1.17~2.52(平均值为1.96),显示轻稀土元素分馏程度高于
球粒陨石标准化值和原始地幔标准化值据文献[34]。
重稀土元素;δEu值介于0.06~0.10之间,平均值为0.08,显示明显的负铕异常,表明源区残留有大量的斜长石或成岩过程经历了斜长石的分离结晶作用[18,35]。在微量元素蛛网图(图6b)上,所有花岗斑岩样品均富集大离子亲石元素Rb、Th、K 和高场强元素Nd、Zr、Hf,而强烈亏损Ba、Sr、P、Ti等元素。
4 讨论
4.1 岩石成因
I型、S型、A型、M型花岗岩是目前常用的花岗岩岩石成因分类方案[36]。其中真正由地幔岩浆衍生的M型花岗岩较为少见,一般产于大洋火山岛弧,岩石组合为大洋斜长花岗岩、辉长岩,w(K2O)<0.6%[3738]。多宝山地区晚泥盆世花岗斑岩w(K2O)=4.73%~5.43%,远大于0.6%,不可能为M型花岗岩。该期花岗斑岩主要由碱性长石、石英及斜长石等矿物组成,在R2R1图解(图5a)中落入碱性花岗岩区域,具有高Si和K,低Ca和Al,富Rb、Th、Zr和Hf,贫Sr、Ba、Eu、Ti和P,高TFeO/MgO值和Rb/Sr值(2.84~4.67),REE分布具有明显的负铕异常,在稀土元素配分曲线图上表现出右倾的燕式分布型式。以上几点明显不同于I型和S型花岗岩,而表现出A型花岗岩的特征[3641]。Whalen等[40]对比研究了大量M、I、S、A 型花崗岩地球化学数据,提出一系列相关判别图解,如(Na2O+K2O)/CaO(NK/C)w(Zr+Ce+Nb+Y)和TFeO/MgOw(Zr+Ce+Nb+Y)图解,对A型花岗岩的判定较为准确。Eby[42]的研究表明,对于高硅的(w(SiO2)>74%)I、S、A 型花岗岩,利用TFeO/MgO w(SiO2)图解能有效地把大多数A型花岗岩区别出来。在这些图解(图7a、b、c)中,晚泥盆世花岗斑岩除1个样品点在TFeO/MgO w(Zr+Ce+Nb+Y)图解中未落入A型花岗岩区域外,其余样品点均落入A型花岗岩区域。但是,A型花岗岩与w(SiO2)>72%的高分异I型、S型花岗岩具有一定的相似性[40,4345]。相对于未分异花岗岩,高分异花岗岩具有低的Zr/Hf值(<38)[45]。相对于A型花岗岩,高分异S型花岗岩具有低的w(Na2O)(平均值为2.81%)和高的w(P2O5)(平均值为0.14%)[46],高分异I型花岗岩具有相对低的w(TFeO)(一般<1%)和高的w(Rb)(>270×106)[47]。多宝山地区晚泥盆世花岗斑岩具有高的Zr/Hf值、高的w(Na2O)和w(FeO)、低的w(P2O5)和w(Rb)(表3),与高分异I型、S型花岗岩明显不同,且在(Al2O3+CaO)/(TFeO+Na2O+K2O)100(MgO+TFeO+TiO2)图解(图5g)上,仅有1个样品点落入高分异花岗岩区域,说明该期花岗斑岩不是高分异I型、S型花岗岩,但可能经历一定的分离结晶作用。
低压和高温是A型花岗岩形成的重要条件[1315,3940]。张旗等[4849]在分析归纳大量资料的基础上,将中酸性花岗岩按Sr、Yb的质量分数和反映的源区压力划分为埃达克岩型花岗岩(w(Sr)>300×
10-6,w(Yb)<2.5×10-6,最小压力>1.2 GPa)、喜马拉雅型花岗岩(w(Sr)<300×10-6,w(Yb)<2×10-6,压力为0.8~1.4 GPa)、浙闽型花岗岩(w(Sr)=(40~400)×10-6,w(Yb)>1.5×10-6,压力为0.8~1.0 GPa)、广西型花岗岩(w(Sr)>400×10-6,w(Yb)>2×10-6,压力尚不明确)和南岭型花岗岩(w(Sr)=(2~100)×10-6,w(Yb)=(1~30)×10-6,壓力<0.8 GPa)等五类。多宝山地区晚泥盆世花岗斑岩w(Sr)= (21~46)×10-6,w(Yb)= (1.05~3.99)×10-6,属南岭型花岗岩,其源区压力小于0.8 GPa,反映了与A型花岗岩一致的低压特征。对于长英质岩浆,锆石饱和温度(TZr)近似于熔体的分离温度,可以通过锆石饱和温度计算来获取岩浆初始温度[50]。计算公式:TZr=12900/[2.95+0.85M+ln(496000/Zr熔体)],式中温度为绝对温度,M=[(Na+K+2Ca)/(Al×Si)] [5051]。经计算,本文花岗斑岩样品的锆石饱和温度介于807.87~834.73 ℃之间(平均值为822.38 ℃),明显高于I型花岗岩的饱和温度(764 ℃和781 ℃)和S型花岗岩的饱和温度(703 ℃和779 ℃),而与澳大利亚Lachlan 褶皱带A型花岗岩的平均温度(839 ℃)相近[43,52]。
综上,多宝山地区晚泥盆世花岗斑岩属于A型花岗岩,可能经历一定的分离结晶作用。
多宝山地区晚泥盆世花岗斑岩样品在微量元素原始地幔标准化蛛网图上显示Nb、Ta、P、Ti的贫化,指示其源区主要来自地壳。表4中可见,样品的Rb/Sr值>0.5,Ti/Zr值<20,Ti/Y值<100,属于壳源岩浆[5556]。另外,样品的Rb/Y、Rb/Nb、Rb/U、Ba/Sr、La/Yb、La/Sm、La/Nb、Sm/Nd、Y/Nb、Yb/Ta、Nb/Th、Nd/Th 、Th/La、Th/Yb等14个特征微量元素比值与大陆地壳相应的元素比值相近,而与原始地幔的相应值相差较远,加之较低的MgO(0.04%~0.12%)、Cr(13.7%~35.6%)质量分数和
Mg#值(4.07~14.49),也显示壳源岩石的特征。然而,Nb/Ta、Nb/U值介于大陆地壳与原始地幔相应值之间,表明其岩浆源区有地幔物质的参与。基于上述研究成果,多宝山地区晚泥盆世花岗斑岩应是有幔源物质贡献的新生下地壳部分熔融的产物。
4.2 构造环境与地质意义
A型花岗岩具有一定的构造指示意义,几乎都是构造伸展背景或挤压、剪切体制下派生的局部拉张环境的产物[1316]。Eby[13]根据不相容元素比值将A型花岗岩分为A1和A2两个亚类。A1亚类中不相容元素的比值与洋岛玄武岩相似,其岩浆来源以地幔为主,主要形成于地幔柱或裂谷环境;A2亚类中不相容元素比值变化较大,其相似范围从大陆地壳平均值到岛弧玄武岩平均值,其岩浆来源主要是地壳,主要形成于弧后、碰撞后或造山期后的张性环境。多宝山地区晚泥盆世花岗斑岩在Ce/NbY/Nb、Yb/Ta Y/Nb和Rb/NbY/Nb图解(图8a、b、c)中均落入A1型花岗岩区域及其附近,在NbYCe图解(图8d)中落入A1型花岗岩与A2型花岗岩界线附近,显示其为A1型花岗岩,兼具A2型花岗岩特征。岩石在R2R1构造环境判别图解(图9a)中落入非造山和造山后期区域,反映该期花岗斑岩形成于伸展构造背景下的拉张环境中。在微量元素w(Rb)w(Y+Nb)、w(Rb)w(Yb+Ta)和w(Nb)w(Y)构造环境判别图解(图9b、c、d)上,样品落入火山弧和板内花岗岩区域。然而,多宝山地区晚泥盆世花岗斑岩的岩浆来源主要是地壳,可能有地幔物质的参与,这与典型的A1亚类花岗岩不同。因此,本文认为该期花岗斑岩形成的构造环境也有别于A1亚类花岗岩,其构造环境需结合区域数据进行综合分析。
多宝山地区早奥陶世至晚泥盆世早期为海相化石丰富的地层,晚泥盆世晚期的地层开始出现陆相化石,标志着多宝山海盆于晚泥盆世开始闭合;晚石炭世—早二叠世沉积地层的缺失标志着多宝山地区此时处于碰撞造山阶段[60]。本区南部霍龙门、嫩江
底图据文献[13]。
等地发育的早石炭世—晚石炭世早期(351~322 Ma)的花岗岩具有板块碰撞前—碰撞的地球化学特征[6164],反映兴安地块与松嫩地块的拼贴时间应为早石炭世—晚石炭世早期;扎兰屯地区发育的晚古生代早期(405~325 Ma)花岗岩类可能与兴安地块和松嫩地块的碰撞拼合作用有关,其拼合时限可能为早石炭世中期[65]。本文中A型花岗岩形成于(365.1±2.6)Ma,属晚泥盆世晚期,不可能是碰撞后花岗岩。有学者在本区南部哈达阳地区和扎兰屯地区发现具有火山弧型玄武岩特征的镁铁—超镁铁质岩石和具有火山弧性质的中酸性火山岩,形成于晚泥盆世晚期(363.3~362.1 Ma)[6667];在本区东北部三道湾子金矿发现晚泥盆世((363.3±2.6)、(369.2±2.3)、(377.0±3.0)Ma)埃达克岩和I型花岗岩,形成于由洋壳俯冲的岛弧环境向洋壳闭合陆陆碰撞的挤压造山的过渡阶段[68]。由此可见,晚泥盆世时期,兴安地块和松嫩地块之间的黑河洋尚未消失,正处于俯冲消减阶段。另外,Gou等[69]在本区西部满洲里—额尔古纳地区发现一套晚泥盆世(360±4)Ma的A2型花岗岩,可能形成于弧后伸展环境;Li等[7072]在额尔古纳地块中南部识别出形成于弧后伸展环境的晚泥盆世(365.2 ± 3.9)Ma的流纹岩,说明晚泥盆世额尔古纳地块处于伸展环境。本文研究的A型花岗斑岩位于兴安地块东北缘的多宝山地区,离满洲里—额尔古纳地区较远,而离嫩江—黑河洋较近,受嫩江—黑河洋北向俯冲的影响较大。因此,多宝山地区在晚泥盆世时期应总体处于洋壳俯冲的挤压背景。结合上述A型花岗岩的分析,本文认为多宝山地区晚泥盆世A型花岗斑岩应形成于嫩江—黑河洋北向俯冲挤压体制下派生的局部拉张环境。
a底圖据文献[57];b、c、d底图据文献[5859]。
5 结论
1) 多宝山地区晚泥盆世花岗斑岩的锆石LAICPMS定年显示,其锆石加权平均年龄为(365.1±2.6)Ma,表明本期花岗斑岩的侵位年龄为晚泥盆世晚期。
2) 岩石学、地球化学特征显示,多宝山地区晚泥盆世花岗斑岩为弱过铝质A型花岗岩,是有幔源物质贡献的新生下地壳部分熔融的产物。
3) 多宝山地区晚泥盆世花岗斑岩为非典型的A1亚类花岗岩,兼具火山弧和板内花岗岩的元素地球化学特征,形成于嫩江黑河洋北向俯冲挤压体制下派生的局部拉张环境,表明多宝山地区约365 Ma处于挤压背景下的局部伸展环境。
参考文献(References):
[1] Hao Y J, Ren Y S, Duan M G, et al. Metallogenic Events and Tectonic Setting of the Duobaoshan Ore Field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Ences, 2015, 97:442458.
[2] Wu G, Chen Y C, Sun F Y, et al. Geochronology, Geochemistry, and SrNdHf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance[J]. Journal of Asian Earth Sciences, 2015, 97:229250.
[3] 刘宝山,程招勋,钱程,等.大兴安岭多宝山晚三叠世双峰式侵入岩年代学及地球动力学背景[J].地球科学,2021,46(7):23112328.
Liu Baoshan, Cheng Zhaoxun, Qian Cheng, et al. Geochronology and Geodynamic Background Study of the Late Triassic Bimodal Pattern Intrusive Rock in Da Hinggan Mountains Duobaoshan Area[J]. Earth Science, 2021, 46(7): 23112328.
[4] Zhao C, Qin K Z, Song G X, et al. The Triassic Duobaoshan Appinite-Granite Suite, NE China: Implications for a Water-Fluxed Lithospheric Mantle and an Extensional Setting Related to the Subduction of the Mongol-Okhotsk Ocean[J]. Lithos, 2021, 394/395: 106169.
[5] Cai W Y, Wang K Y, Li J, et al. Geology, Geochronology and Geochemistry of Large Duobaoshan CuMoAu Orefield in NE China: Magma Genesis and Regional Tectonic Implications[J]. Geoscience Frontiers, 2021, 12(1): 265292.
[6] Liu J, Zhou Z H, He Z F, et al. Ircon UPb Dating and Geochemistry of Ore-Bearing Tonalite in Tongshan Copper Deposit, Heilongjiang Province[J]. Mineral Deposits, 2015, 34(2): 289308.
[7] Chu S X, Zeng Q D, Liu J M, et al. Early-Middle Jurassic Magmatism and Skarn-Porphyry Mineralization in NE China: Geochronological and Geochemical Constraints from the Sankuanggou Skarn FeCu(Mo) Deposit, and Tectonic Implications[J]. Journal of Geochemical Exploration, 2019, 200: 84103.
[8] Gao R Z, Xue C J, Lu X B, et al. Genesis of the Zhengguang Gold Deposit in the Duobaoshan Ore Field, Heilongjiang Province, NE China: Constraints from Geology, Geochronology and SPb Isotopic Compositions[J]. Ore Geology Reviews, 2017, 84: 202217.
[9] Yuan M W, Li L, Li S R, et al. Bitumen SmNd, Pyrite RbSr and Zircon UPb Isotopes Constrain Timing of Ore Formation and Hydrocarbon Deposition in the Erdaokan AgPbZn Deposit, NE China[J]. Ore Geology Reviews, 2021, 134: 104161.
[10] 冷亚星,王建平,任纪舜.黑龙江多宝山斑岩铜矿赋矿岩体侵位深度及其对成矿的约束[J].地质通报,2022,41(4):642656.
Leng Yaxing, Wang Jianping, Ren Jishun. The Emplacement Depth of Ore-Hosting Rock Body and Its Constraints on Mineralization in Duobaoshan Porphyry Copper Deposit, Heilongjiang Province[J]. Geological Bulletin of China, 2022, 41(4): 642656.
[11] 李玉洁,李成禄,杨元江,等.大兴安岭东北部多宝山矿集区二道坎银铅锌矿床磁铁矿地球化学特征[J].吉林大学学报(地球科学版),2023,53(2):436449.
Li Yujie, Li Chenglu, Yang Yuanjiang, et al. Geochemical Characteristics of Magnetite in Erdaokan AgPbZn Deposit, Duobaoshan Ore Concentration Area, Northeastern Great Xingan Range[J]. Journal of Jilin University (Earth Science Edition), 2023,53(2):436449.
[12] 符安宗,李金明,吕石佳,等.黑龙江多宝山地区裸河岩体锆石UPb年龄、地球化学特征及地质意义[J].中国地质调查,2023,10(1):5261.
Fu Anzong, Li Jinming, Lü Shijia, et al. Zircon UPb Ages, Geochemical Characteristics and Geological Significance of Luohe Pluton in Duobaoshan Area, Heilongjiang Province [J]. Geological Survey of China, 2023,10(1):5261.
[13] Eby G N. Chemical Subdivision of the AType Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7): 641644.
[14] Martin R F. AType Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment[J]. Lithos, 2006, 91(1): 125136.
[15] 吴锁平,王梅英,戚开静. A型花岗岩研究现状及其述评[J].岩石矿物学杂志,2007,26(1):5766.
Wu Suoping, Wang Meiying, Qi Kaijing. Present Situation of Researches on AType Granites :A Review[J]. Acta Petrologica et Mineralogica, 2007, 26(1): 5766.
[16] 张旗. A型花岗岩的标志和判别:兼答汪洋等对“A型花岗岩的实质是什么”的质疑[J].岩石矿物学杂志,2013,32(2):267274.
Zhang Qi. The Criteria and Discrimination for AType Granites:A Reply to the Question Put Forward by Wang Yang and Some Other Persons for “AType Granite:What is the Essence?” [J]. Acta Petrologica et Mineralogica,2013,32(2):267274.
[17] Deng C Z, Sun D Y, Sun G Y, et al. Age and Geochemistry of Early Ordovician AType Granites in the Northeastern Songnen Block, NE China[J]. Acta Geochimica, 2018, 37(6): 805819.
[18] 李金超,国显正,孔会磊,等.东昆仑浪麦滩地区A型花岗岩年代学、地球化学特征及其地质意义[J].地质学报,2021,95(5):15081522.
Li Jinchao, Guo Xianzheng, Kong Huilei, et al. Geochronology,Geochemical Characteristics and Geological Significance of AType Granite from the Langmaitan Area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 15081522.
[19] 潘桂棠, 肖慶辉, 陆松年, 等.中国大地构造单元划分[J].中国地质,2009,36(1):128.
Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of Tectonic Units in China [J]. Geology in China,2009,36(1):128.
[20] 符安宗, 楊文鹏, 刘渊, 等. 大兴安岭中段碾子山地区晚三叠世埃达克质侵入岩的发现及其地质意义[J].现代地质, 2022, 36(1):266281.
Fu Anzong, Yang Wenpeng, Liu Yuan, et al. Discovery of Late Triassic Adakitic Rocks at Nianzishan in the Central Great Xingan Range and Its Geological Significance [J]. Geoscience, 2022, 36(1):266281.
[21] 张昱, 杜兵盈, 张铁安,等. 黑龙江省嫩江黑河地区古、中生代洋陆转换的岩浆岩记录及相关的矿床类型[J]. 地球科学, 2020, 45(7):23602378.
Zhang Yu, Du Bingying, Zhang Tiean, et al. Record of Magmatic Rocks and Related Type of Deposit for Paleozoic and Mesozoic Ocean-Land Transition in Nenjiang-Heihe Area, Heilongjiang Province [J]. Earth Science, 2020, 45(7):23602378.
[22] Jackson S E, Pearson N J, Griffin W L, et al. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ UPb Zircon Geochronology[J]. Chemical Geology, 2004, 211(1/2): 4769.
[23] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon UPb Isotope and Trace Element Analyses by LAICPMS[J]. Chinese Science Bulletin, 2010, 55(15): 15351546.
[24] Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.
[25] Qi L, Hu J, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3): 507513.
[26] Hoskin P W O, Black L P. Metamorphic Zircon Formation by Solid﹕Tate Recrystallization of Protolith Igneous Zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423439.
[27] De la Roche H, Leterrier J, Grandclaude P, et al. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses:Its Relationships with Current Nomenclature[J]. Chemical Geology, 1980, 29(1/2/3/4): 183210.
[28] Wright J B. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis[J]. Geological Magazine, 1969, 106(4):370384.
[29] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):6381.
[30] Frost C D, Frost B R. On Ferroan (AType) Granitoids: Their Compositional Variability and Modes of Origin[J]. Journal of Petrology, 2011, 52(1):3953.
[31] Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11):20332048.
[32] Maniar P D , Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geol Soc Am Bull, 1989, 101(5):635643.
[33] Sylvester P J. Post-Collisional Alkaline Granites[J]. Journal of Geology, 1989, 97(3): 261280.
[34] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313345.
[35] 支倩, 李永軍, 段丰浩, 等.新疆西准噶尔乌尔禾地区早二叠世A1型花岗岩成因及其地质意义[J].地质学报,2021,95(8):24532470.
Zhi Qian, Li Yongjun, Duan Fenghao, et al. Petrogenesis and Its Geological Implications of Early Permian AType Granite in Urho Area, Western Junggar, Xinjiang [J]. Acta Geologica Sinica, 2021, 95(8): 24532470.
[36] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):12171238.
Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites [J]. Acta Petrologica Sinica, 2007,23(6): 12171238.
[37] 马鸿文.花岗岩成因类型的判别分析[J].岩石学报,1992,8(4):341350.
Ma Hongwen. Discrimination of Genetic Types of Granitoid Rocks[J].Acta Petrologica Sinica,1992,8(4):341350.
[38] Gerlach D C , Hans G A, Leeman W P. An Island Arc Origin for the Canyon Mountain Ophiolite Complex, Eastern Oregon, USA[J]. Earth & Planetary Ence Letters, 1981, 53(2):255265.
[39] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J].岩石矿物学杂志,2012,31(4):621626.
Zhang Qi, Ran Hao, Li Chengdong. AType Granite:What Is the Essence? [J]. Acta Petrologica et Mineralogica, 2012, 31(4): 621626.
[40] Whalen J B , Currie K L , Chappell B W. AType Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407419.
[41] Collins W J, Beams S D, White A J R, et al. Nature and Origin of AType Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2):189200.
[42] Eby G N.The AType Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26(1):115134.
[43] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous AType Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997(3):371391.
[44] 王楠, 劉治博, 宋扬, 等. 西藏班戈地区早白垩世高分异花岗岩年代学及岩石成因[J].岩石学报, 2020, 36(2): 409425.
Wang Nan, Liu Zhibo, Song Yang, et al. Geochronology and Petrogenesis of Highly Fractionated Early Cretaceous Granite in Baingoin Area, Tibet[J]. Acta Petrologica Sinica, 2020, 36 (2) :409425.
[45] Wu F Y, Liu X C, Ji W Q, et al. Highly Fractionated Granites: Recognition and Research[J].Science China(Earth Sciences),2017,60(7):12011219.
[46] Chappell B W,White A J R. I and SType Granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences,1992, 83(1/2): 126.
[47] 王强, 赵振华, 熊小林. 桐柏—大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志,2000,19(4):297306,315.
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin.The Ascertainment of Late-Yanshanian AType Granite in Tongbai-Dabie Orogenic Belt[J]. Acta Petrologica et Mineralogica, 2000,19(4): 297306,315.
[48] 张旗, 王焰, 李承东, 等. 花岗岩的SrYb分类及其地质意义[J].岩石学报,2006,22(9):22492269.
Zhang Qi, Wang Yan, Li Chengdong, et al. Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J].Acta Petrologica Sinica,2006,22(9):22492269.
[49] 张旗, 金惟俊, 李承东, 等. 再论花岗岩按照SrYb的分类:标志[J].岩石学报,2010,26(4):9851015.
Zhang Qi, Jin Weijun, Li Chengdong, et al. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index [J]. Acta Petrologica Sinica, 2010, 26(4): 9851015.
[50] Miller C F , Mcdowell S M , Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003, 31(6):529532.
[51] Watson E B , Harrison T M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth & Planetary Ence Letters, 1983, 64(2):295304.
[52] King P L, Chappell B W, Allen C M, et al. Are AType Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences,2001,48(4):501514.
[53] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. London: Blackwell Scientific Publications, 1985.
[54] Rudnick R L, Gao Shan. Composition of the Continental Crust [J]. Treatise on Geochemistry, 2003,3:164.
[55] Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden[J]. Zeitschrift Fuer Geologische Wissenschaften, 1985, 13(5):615627.
[56] Wilson M. Igneous Petrogenesis: A Global Tectonic Approach [M]. Dordrecht: Springer ,1989.
[57] Batchelor R A, Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters[J]. Chemical Geology, 1985, 48(1):4355.
[58] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956983.
[59] Pearce J. Sources and Settings of Granitic Rocks[J]. Episodes, 1996, 19(4):120125.
[60] 赵焕利, 刘旭光, 刘海洋, 等.黑龙江多宝山古生代海盆闭合的岩石学证据[J].世界地质,2011,30(1):1827.
Zhao Huanli, Liu Xuguang, Liu Haiyang, et al. Petrological Evidence of Paleozoic Marine Basin Closure in Duobaoshan of Heilongjiang[J].Global Geology,2011,30(1):1827.
[61] 代宇,刘江领,刘旭光, 等.黑龙江多宝山地区大岔子正长花岗岩锆石UPb年龄及其地质意义[J].地质与资源,2012,21(2):188193.
Dai Yu, Liu Jiangling, Liu Xuguang, et al. Zircon UPb Age of the Dachazi Syenogranite in Duobaoshan Area,Heilongjiang Province: Geological Implication [J]. Geology and Resources, 2012, 21(2): 188193.
[62] 崔芳华, 郑常青, 徐学纯, 等. 大兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松嫩地块拼合时间的限定[J].地质学报,2013,87(9):12471263.
Cui Fanghua, Zheng Changqing, Xu Xuechun, et al. Late Carboniferous Magmatic Activities in the Quanshenglinchang Area,Great Xingan Range:Constrains on the Timing of Amalgamation Between Xingan and Songnen Massifs [J].Acta Geologica Sinica,2013,87(9):12471263.
[63] 李成祿, 曲晖, 赵忠海, 等. 黑龙江霍龙门地区早石炭世花岗岩的锆石UPb年龄、地球化学特征及构造意义[J].中国地质,2013,40(3):859868.
Li Chenglu, Qu Hui, Zhao Zhonghai, et al. Zircon UPb Ages, Geochemical Characteristics and Tectonic Implications of Early Carboniferous Granites in Huolongmen Area, Heilongjiang Province[J].Geology in China,2013,40(3):859868.
[64] 汪岩, 付俊彧, 杨帆, 等. 嫩江—黑河构造带收缩与伸展:源自晚古生代花岗岩类的地球化学证据[J].吉林大学学报(地球科学版),2015,45(2):374388.
Wang Yan, Fu Junyu, Yang Fan, et al. Contraction and Extension in NenjiangHeihe Tectonic Belt:Evidence from the Late Paleozoic Granitoid Geochemistry[J]. Journal of Jilin University(Earth Science Edition),2015,45(2):374388.
[65] 钱程, 陆露, 秦涛, 等. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用:对额尔古纳兴安地块和松嫩地块拼合时限的制约[J].地质学报,2018,92(11):21902214.
Qian Cheng, Lu Lu, Qin Tao, et al. The Early Late-paleozoic Granitic Magmatism in the Zalantun Region, Northern Great Xingan Range, NE China: Constraints on the Timing of Amalgamation of Erguna-Xingan and Songnen Blocks[J].Acta Geologica Sinica,2018, 92(11):21902214.
[66] 付俊彧, 汪岩, 那福超, 等. 内蒙古哈达阳镁铁超镁铁质岩锆石UPb年代学及地球化学特征:对嫩江—黑河地区晚泥盆世俯冲背景的制约[J].中国地质,2015,42(6):17401753.
Fu Junyu, Wang Yan, Na Fuchao, et al. Zircon UPb Geochronology and Geochemistry of the Hadayang Maficultramafic Rocks in Inner Mongolia:Constraints on the Late Devonian Subduction of Nenjiang-Heihe Area, Northeast China[J].Geology in China,2015,42(6):17401753.
[67] 张渝金, 张超, 吴新伟, 等. 大兴安岭北段扎兰屯地区晚古生代海相火山岩年代学和地球化学特征及其构造意义[J].地质学报,2016,90(10):27062720.
Zhang Yujin, Zhang Chao, Wu Xinwei, et al. Geochronology and Geochemistry of Late Paleozoic Marine Volcanic from the Zhalantun Area in Northern Da Hinggan Mountains and Its Geological Significance [J].Acta Geologica Sinica, 2016, 90(10): 27062720.
[68] 刘佳宜. 黑龙江省三道湾子地区花岗岩年代学和地球化学研究[D].北京:中国地质大学(北京),2016.
Liu Jiayi. The Geochronological and Geochemical Research of Granites in Sandaowanzi,Heilongjiang Province[D].Beijing: China University of Geosciences (Beijing),2016.
[69] Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli-Erguna Area of Inner Mongolia, China: Geochronological, Geochemical and Hf Isotopic Evidence[J]. Journal of Asian Earth Sciences,2013,67/68: 114137.
[70] Li Y, Xu W L, Wang F, et al. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China: Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime[J].Journal of Asian Earth Sciences,2017,144: 205224.
[71] 王之晟,高天栋,王洪志,等.大兴安岭阿尔山地区宝力高庙组浅变质岩年代学、地球化学特征及原岩建造探讨[J].世界地质,2024,43(1):118.
Wang Zhisheng,Gao Tiandong,Wang Hongzhi,et al. Chronology,Geochemical Characteristics and Protolith Formation of Low-Grade Metamorphic Rocks from Baoligaomiao Formation in Aershan Area,Da Hinggan Ling (Mts.)[J]. World Geology,2024,43(1):118.
[72] 王楚杰,武振,王國君.兴安地块阿力格亚林场早二叠世石英闪长岩的成因及构造意义[J].世界地质,2023,42(1):110.
Wang Chujie,Wu Zhen,Wang Guojun. Petrogenesis and Tectonic Implications of Early Permian Quartzdiorite in Aligya Forest Farm, Xingan Block[J]. World Geology,2023,42(1):110.