液相微萃取技术在烟草分析中的应用进展

2024-03-26 08:13时林平陈满堂赵阁刘瑞红谢复炜
中国烟草学报 2024年1期
关键词:液液有机溶剂液相

时林平,陈满堂,赵阁,刘瑞红,谢复炜*

综述

液相微萃取技术在烟草分析中的应用进展

时林平1,2,陈满堂1,赵阁1,刘瑞红1,谢复炜1*

1 中国烟草总公司郑州烟草研究院,郑州高新技术产业开发区枫杨街2号 450001;2 郑州大学,郑州高新技术产业开发区科学大道100号 450001

利用快速高效的样品前处理方法进行烟草成分分析可以减少烟草中基质对分析过程的影响。液相微萃取技术是一种简单、快捷、环保的样品前处理技术。本文介绍了液相微萃取技术的原理,分析了影响萃取效率的因素,总结了液相微萃取技术在烟草分析中的应用进展。针对液相微萃取技术在烟草样品前处理中存在的不足,对其应用前景进行了展望。

液相微萃取;样品前处理;烟草分析

烟草品质取决于其化学成分,因此,烟草化学成分的分析对于评价烟草质量风格至关重要。烟草成分极其复杂,且测定时各成分间往往会相互干扰,这给烟草分析带来了较大挑战。为减少烟草中基质的影响,提高检测方法的灵敏度,降低检出限,实现复杂烟草样品的常量、半微量甚至痕量分析,选择合适的样品前处理技术尤为重要。固相萃取(SPE)[1-2]和液液萃取(LLE)[3]是烟草分析中常用的两种前处理技术,但这些技术往往存在耗时长、有毒有机溶剂消耗多等缺点。为克服这些缺点,微萃取技术尤其是液相微萃取(LPME)逐渐得到发展。作为一种绿色的样品前处理技术,液相微萃取技术具有所需样品量少、操作简单、环境友好等优点,已在烟草中脂肪胺[4]、氨基酸[5]、香味成分[6]和挥发性成分[7]等以及烟气中烟碱[8-9]、多酚[10]、芳香胺[11]等的分析中得到广泛应用。然而,目前仍缺乏对液相微萃取技术在烟草分析中应用进展的归纳总结。本文重点针对LPME技术的原理、影响因素、分类及其在烟草分析中的应用进行系统综述,并展望了其在烟草分析中的发展方向。

1 LPME技术简介

LPME技术是LLE的改进方法,以液体介质作为萃取相,采用特定负载技术将100 μL或更少体积的溶剂固载成萃取相,用于分离富集痕量目标物。与LLE相比,LPME技术无需大量有机溶剂,更安全环保,也可在一定程度上降低基质干扰。LPME包括两相LPME和三相LPME。在两相LPME中,萃取相与样品溶液直接接触,有利于萃取过程的进行,缺点是降低了样品的选择性,且限制萃取溶剂为水不溶的有机液体。然而,在三相LPME中,样品溶液和最终的受体相通过第三种溶剂分离,该溶剂与两相不混溶,可以用水作为受体相,能够提高方法的选择性。

2 LPME技术原理

LPME技术是一种基于分析物在样品及小体积有机溶剂之间平衡分配,集萃取、浓缩、解吸于一体的样品前处理技术。

对于液液微萃取体系,平衡状态下LPME的萃取量n的计算方式为[12]:

对于液液液微萃取体系,体系达到平衡后分析物的萃取量n的计算方式为[13]:

对于静态顶空LPME体系,平衡状态下分析物的萃取量n的计算方式为[12]:

对于动态顶空LPME体系,平衡状态下萃取量n的计算方式为[14]:

3 影响萃取效率的因素

LPME的萃取效率受萃取溶剂的种类、pH、萃取时间、盐效应、温度等的影响。

3.1 萃取溶剂

萃取溶剂的选择依据“相似相溶”原则。为了避免萃取过程中萃取溶剂的挥发,选择有机溶剂时应避免挥发性有机溶剂[15]。对于单滴微萃取(SDME),针头悬挂液滴的大小也会影响萃取效率。萃取效率受速率常数k(s-1)的影响,k的计算方式为[16]:

3.2 其他影响因素

改变溶液pH可以改变离子在溶液中的存在形态,从而改变溶解度,增加在有机相中的分配。LPME是分析物在样品与有机溶剂之间分配平衡的过程,当分析物在样品与有机溶剂之间达到分配平衡时萃取量最大,延长萃取时间也可能会导致萃取率下降。对于分配系数较小物质的萃取时间则需要严格控制。液液分散微萃取由于萃取剂均匀地分散在水相中而能在很短时间内将分析物从水相转移到有机相,因此萃取效率受萃取时间的影响较小。在液体样品中加入适量无机盐可增加离子浓度,降低待测物溶解度,增加萃取效率和分析灵敏度。升高温度会加快分析物的扩散速度,缩短萃取时间;但也会加速有机溶剂的挥发,导致其在溶剂中的萃取量减少。因此,在实际操作过程中要综合考虑萃取时间和萃取效率以选择最佳萃取温度。

4 LPME技术分类及在烟草分析中的应用

LPME技术近年来发展迅速(图1)。1996年,Liu和Dasgupta[17]提出LPME技术;1997年He和Lee[18]采用微量注射器作为萃取微滴的支撑体和萃取结束后的进样器,提出了静态LPME技术和动态LPME技术,命名为SDME;2002年,Zhao和Lee[19]提出了中空纤维LPME技术(HF-LPME),克服了悬在色谱微量进样器针头上的有机液滴在样品搅拌时易于脱落的缺点;Pedersen-Bjergaard和Rasmussen)[15]于1999年提出了膜辅助液液液微萃取技术(LLLME);2003年Gjelstad等[20]报道了一种膜辅助液-液-液萃取的新方法,称为平行液膜微萃取(PALME);2006年Rezaee等[21]提出分散液液微萃取技术(DLLME);同年,Pedersen-Bjergaard和Rasmussen[22]提出的电膜微萃取技术(EME)已成为从复杂样品中分离离子药物的潜在技术。表1列举了LPME技术在烟草分析中的应用实例。

表1 基于LPME技术的烟草分析方法①

Tab.1 Tobacco analysis methods based on the LPME technology

注:①GC-MS: 气相色谱-质谱联用;HPLC-UV: 高效液相色谱-紫外检测器;UA-IL-DLLME: 超声辅助离子液体分散液-液微萃取技术;DSDME: 直接悬浮液滴微萃取;VA-DLPME: 涡旋辅助分散液相微萃取;UA-DES-LPME: 超声辅助低共熔溶剂液相微萃取;MALDI-FTICR-MS: 基质辅助激光解吸/电离傅里叶变换离子回旋共振质谱法;GC-MS/MS: 气相色谱-串联质谱;UV-Vis: 紫外可见吸收光谱仪;FAAS: 火焰原子吸收光谱仪;FTMS: 傅里叶变换质谱。

Note: ①GC-MS: gas chromatography-mass spectrometry;HPLC-UV: High performance liquid chromatography ultraviolet detector;UA-IL-DLLME: Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction;DSDME: Direct suspension droplet microextraction;VA-DLPME: Vortex-assisted dispersive liquid phase microextraction;UA-DES-LPME: Ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents;MALDI-FTICR-MS: matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry; GC-MS/MS: Gas chromatography-tandem mass spectrometry;UV-Vis: Ultraviolet-visible absorption spectroscopy;FAAS: Flame atomic absorption spectrometer;FTMS: Fourier transform mass spectrometry.

4.1 SDME

SDME包括直接单滴微萃取(DI-SDME)和顶空SDME(HS-SDME)。DI-SDME是直接将有机液滴浸没到样品溶液中,常用于萃取热不稳定或沸点较高的目标分析物;HS-SDME是将一滴萃取剂暴露在样品溶液上方的顶空中,用于萃取挥发性和半挥发性分析物[18]。Sha等[4]采用HS-SDME-同步衍生气相色谱-质谱联用(GC-MS)技术测定了烟草样品中的脂肪胺,该方法线性良好。Xie等[28]用SDME-同步衍生-基质辅助激光解吸/电离傅里叶变换离子回旋共振质谱法(EDSD/MALDI-FTICR-MS)技术分析测定单口烟气中的小分子醛,该方法简单、快速、溶剂和试剂消耗量少。需要注意的是,SDME存在液滴不稳定、容易从针头尖端脱落、重复性差等缺点。

4.2 HF-LPME

HF-LPME的发展解决了SDME中出现的问题,其原理是中空纤维浸入有机溶剂中,中空纤维的孔隙通过毛细管力与纤维壁结合形成薄支撑液膜(SLMs),溶剂穿过SLMs,从而防止位于纤维腔内的萃取相溶解到样品中[19, 38]。在两相LPME采样模式中,分析物从样品中萃取到固定在中空纤维孔隙中的萃取剂中;在三相LPME萃取模式中,中空纤维孔隙中的有机溶剂与中空纤维腔内的受体溶剂不同,形成“液液液”三相萃取体系。Esrafili等[25]基于在线HF-LPME-高效液相色谱-紫外检测(HPLC-UV)自动化仪器定量分析卷烟烟气中的吡啶,该方法操作简单、溶剂消耗量低、易于实现自动化。

4.3 PALME

PALME的提出解决了HF-LPME不能在商业设备中应用的缺点,其原理与HF-LPME相同。PALME基于96孔滤板,每个孔的底部都对应含有多孔过滤器的滤板;用浸渍有机溶剂的平膜将水样品和水受体相分开,形成三明治式的体系[20,39]。PALME技术操作过程简单,只消耗几微升的样品体积,可以同时进行多个样品的萃取,PALME形成的三相萃取体系减少了基质效应的影响[40]。

4.4 DLLME

DLLME是将萃取剂和分散剂混合物用注射器快速注入盛有液体样品的锥形离心管中,形成萃取剂-分散剂-液体样品三相混合状态溶液;萃取完成后以低速离心分离萃取剂和样品,收集底部的萃取剂层进行分析[21]。Tabrizi和Abdollahi[41]建立了DLLME-HPLC法测定卷烟主流烟气中苯甲醛、丁醛和糠醛等醛类物质,该方法新颖、简单且对环境友好。Li等[30]用衍生化-超声辅助-DLLME技术测定烟草中11种主要碳水化合物,并将该方法成功应用于烟草添加剂中碳水化合物的测定。虽然DLLME萃取效率高,但还有以下限制: 使用有害的有机溶剂(如氯化溶剂)作为萃取剂;乳化需要一种与萃取溶剂竞争的分散溶剂,从而降低萃取效率;萃取后需要离心分离,难以实现自动化。为解决以上问题,研究者们逐步将ILs、DESs等新型绿色溶剂应用于DLLME技术。Memon等[26]建立了一种基于DESs的超声辅助LPME方法,用于测定烟草样品中的铅含量,该方法环保、方便、简单。

4.5 EME技术

EME技术是在样品溶液中使用两个电极,并在中空纤维腔中外加电场的一种HF-LPME模式,其原理是基于被分析物在外加电场的作用下,通过SLMs进入微升级的受体溶液中;萃取过程中,带电目标分析物在电场的作用下快速迁移到SLMs中并穿过SLMs,最终在接收相中富集[22]。在萃取碱性化合物时,应调整接收相和样品相pH使目标分析物带正电,阳极置于样品相中,阴极置于接收相中;当萃取酸性化合物时,调整接收相和样品相pH确保目标分析物带负电,电极位置则相反。如今,EME技术广泛用于萃取食品及环境样品中的有机微污染物等[42-44]。EME技术正成为一种从复杂生物样品中分离、浓缩的新绿色方法。Chen等[37]建立了一种EME-HPLC-UV联用技术用于传统卷烟、电子烟和加热不燃烧卷烟气溶胶中烟碱含量的检测,该方法环保、方便、简单。

5 总结与展望

液相微萃取技术是一种新型环保的绿色萃取技术,它集采样、萃取、浓缩等步骤于一体,在分析化学领域展现出越来越广的应用前景,被广泛应用于烟草成分分析。但液相微萃取技术在萃取剂的使用、重现性等方面还存在局限性。液相微萃取技术未来的发展方向在于: (1)筛选环境友好、成本低廉的萃取剂;(2)进一步提高萃取技术的选择性;(3)与其他样品前处理技术联用;(4)与多种检测手段相结合;(5)实现现场原位分析;(6)开发新型高稳健液相微萃取技术应用于烟草成分的大批量分析。

[1] ZHAO G, WANG S, FU Y, et al. Analysis of the heterocyclic aromatic amines in cigarette smoke by liquid chromatography- andem mass spectrometry[J]Chromatographia, 2014, 77(11): 813-820.

[2] CHEN Y, ZHANG W, ZHANG Y, et al. In situ preparation of core-shell magnetic porous aromatic framework nanoparticles for mixed-mode solid-phase extraction of trace multitarget analytes[J]. Journal of Chromatography A, 2018, 1556: 1-9.

[3] 严俊,王红娟,陈志燕,等. 气相色谱-串联质谱法测定电子烟烟液中的10种生物碱含量[J]. 分析测试学报,2021, 40(7): 1037-1042.

YAN Jun, WANG Hongjuan, CHEN Zhiyan, et al. Determination of 10 alkaloids in refill solutions for electronic cigarettes by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(7): 1037-1042.

[4] SHA Y, MENG J, LIN H, et al. Development of single-drop microextraction and simultaneous derivatization followed by GC-MS for the determination of aliphatic amines in tobacco[J]. Journal of Separation Science, 2010, 33(9): 1283-1287.

[5] LI G, WU D, XIE W, et al. Analysis of amino acids in tobacco by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method[J]. Journal of Chromatography A, 2013, 1296: 243-247.

[6] WU L, LI Q, LI C, et al. Determination of aroma components in Chinese southwest tobacco by directly suspended droplet microextraction combined with GC-MS[J]. Journal of Chromatographic Science, 2014, 52(10): 1317-1325.

[7] SUN S H, XIE J P, XIE F W, et al. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2008, 1179(2): 89-95.

[8] 吴亿勤,秦云华,刘巍,等. 分散液液微萃取结合高效液相色谱测定主流烟气中的烟碱[J]. 云南大学学报(自然科学版),2018, 40(3): 545-550.

WU Yiqin, QIN Yunhua, LIU Wei, et al. Determination of nicotine in mainstream flue gas by dispersive liquid-liquid microextraction combined with high performance liquid chromatography[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(3): 545-550.

[9] XIE J P, SUN S H, WANG H Y, et al. Determination of nicotine in mainstream smoke on the single puff level by liquid-phase microextraction coupled to matrix-assisted laser desorption/ ionization fourier transform mass spectrometry[J] Rapid Communications in Mass Spectrometry, 2006, 20(17): 2573-2578.

[10] CAI K, GAO W, YUAN Y, et al. An improved in situ acetylation with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the sensitive determination of phenols in mainstream tobacco smoke[J]. Journal of Chromatography A, 2019, 1603: 401-406.

[11] 邓惠敏,李中皓,边照阳,等. GC/MS法同时测定主流烟气中9种芳香胺[J]. 烟草科技,2017, 50(12): 61-69.

DENG Huimin, LI Zhonghao, BIAN Zhaoyang, et al. Simultaneous determination of nine aromatic amines in mainstream cigarette smoke by GC/MS[J]. Tobacco Science & Technology, 2020, 53(9): 33-39, 61.

[12] PRZYJAZNY A, KOKOSA J M. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction[J]. Journal of Chromatography A, 2002, 977(2): 143-153.

[13] 赵汝松,徐晓白,刘秀芬. 液相微萃取技术的研究进展[J]. 分析化学,2004, 32(9): 1246-1251.

ZHAO Rusong, XU Xiaobai, LIU Xiufen, et al. The advancement and application of liquid-phase microextraction[J]. Chinese Journal of Analytical Chemistry, 2004, 32(9): 1246-1251.

[14] SHEN G, LEE H K. Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection[J]. Analytical Chemistry, 2003, 75(1): 98-103.

[15] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Liquid-liquid- liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Analytical Chemistry, 1999, 71(14): 2650-2656.

[16] ZHAO L, LEE H K. Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water[J]. Journal of Chromatography A, 2001, 919(2): 381-388.

[17] LIU H, DASGUPTA P K. Analytical chemistry in a drop. Solvent extraction in a microdrop[J]. Analytical Chemistry, 1996, 68(11): 1817-1821.

[18] HE Y, LEE H K. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe[J]. Analytical Chemistry, 1997, 69(22): 4634-4640.

[19] ZHAO L, LEE H K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry[J]. Analytical Chemistry, 2002, 74(11): 2486-2492.

[20] GJELSTAD A, RASMUSSEN K E, PARMER M P, et al. Parallel artificial liquid membrane extraction: Micro-scale liquid-liquid-liquid extraction in the 96-well format[J]. Bioanalysis, 2013, 5(11): 1377-1385.

[21] REZAEE M, ASSADI Y, MILANI HOSSEINI M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1-2): 1-9.

[22] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids[J]. Journal of Chromatography A, 2006, 1109(2): 183-190.

[23] Memon Z M, Yilmaz E,Soylak M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination[J]. Journal of Molecular Liquids, 2017, 229: 459-464.

[24] SUN S, CHENG Z, XIE J, et al. Identification of volatile basic components in tobacco by headspace liquid-phase microextraction coupled to matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(8): 1025-1030.

[25] ESRAFILI A, YAMINI Y, GHAMBARIAN M, et al. Automated preconcentration and analysis of organic compounds by on-line hollow fiber liquid-phase microextraction-high performance liquid chromatography[J]. Journal of Chromatography A, 2012, 1262: 27-33.

[26] MEMON Z M, YILMAZ E, SHAH A M, et al. A green ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents for flame atomic absorption spectrometer determination of trace level of lead in tobacco and food samples[J]. Journal of the Iranian Chemical Society, 2018, 16(4): 687-694.

[27] EL Sheikh R, HASSAN W S, YOUSSEF A M, et al. Eco-friendlyultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco samples prior to FAAS determination[J]. International Journal of Environmental Analytical Chemistry, 2020, 102(4): 899-910.

[28] XIE J, YIN J, SUN S, et al. Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke[J]. Analytica Chimica Acta, 2009, 638(2): 198-201.

[29] SHA Y, MENG J, ZHANG Y, et al. Determination of volatile organic acids in tobacco by single-drop microextraction with in-syringe derivatization followed by GC-MS[J]. Journal of Separation Science, 2010, 33(2): 212-217.

[30] LI P, ZHU X, HONG S, et al. Ultrasound-assisted extraction followed by dispersive liquid-liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives[J]. Analytical Methods, 2012, 4(4): 995-1000.

[31] 朱晓兰,洪深求,李盼盼,等. 分散液液微萃取/气相色谱-质谱法同时测定烟用添加剂中8种烷基苯类香味有害物[J]. 分析测试学报,2012, 31(3): 351-354, 358.

ZHU Xiaolan, HONG Shenqiu, LI Panpan, et al. Simultaneous determination of allkenylbenzenes and other flavor-related compounds in tobacco additives by dispersive liquid-liquid microextraction and GC-MS[J]. Journal of Instrumental Analysis, 2012, 31(3): 351-354, 358.

[32] ZHU X, XU Y, GAO Y, et al. Pressurized liquid extraction combined with dispersive liquid-liquid micro-extraction as an efficient sample preparation method for determination of volatile components in tobacco[J]. Journal of the Chinese Chemical Society, 2012, 59(7): 909-916.

[33] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.

[34] ALOTHMAN Z A, HABILA M A, YILMAZ E, et al. Lead preconcentration as rac-(E,E)-N,N'-bis(2-chlorobenzylidene)cyclohexane-1,2-diamine complexes from water and tobacco samples by dispersive liquid-liquid microextraction[J]. Journal of Analytical Chemistry, 2015, 70(6): 691-695.

[35] 陈晓水,杨洋,汤晓东,等. 分散液液微萃取-GC-MS/MS法测定卷烟主流烟气粒相物中的农药残留[J]. 烟草科技,2017, 50(1): 58-66.

CHEN Xiaoshui, YANG Yang, TANG Xiaodong, et al. Determination of pesticide residues in particulate matter of mainstream cigarette smoke by dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry[J]. Tobacco Science & Technology, 2017, 50(1): 58-66.

[36] 秦云华,吴亿勤,张承明,等. 分散液液微萃取-微量分光光度法测定再造烟叶废水中烟碱[J]. 分析试验室,2018, 37(6): 696-700.

QIN Yunhua, WU Yiqin, ZHANG Chengming, et al. Determination of nicotine in reconstituted tobacco wastewater using dispersive liquid.liquid microextraction combined with microscopic spectrophotometry[J]. Chinese Journal of Analysis Laboratory, 2018, 37(6): 696-700.

[37] CHEN M, QIN Y, WANG S, et al. Electromembrane extraction of nicotine in inhaled aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco products[J]. Journal of Chromatography B, 2022, 1208: 123391.

[38] GHAMBARIAN M, YAMINI Y, ESRAFILI A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications[J]. Microchimica Acta, 2012, 177(3-4): 271-294.

[39] OLSEN K N, ASK K S, PEDERSEN-BJERGAARD S, et al. Parallel artificial liquid membrane extraction of psychoactive analytes: A novel approach in therapeutic drug monitoring[J]. Bioanalysis, 2018, 10(6): 385-395.

[40] GJELSTAD A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction[J]. TRAC Trends in Analytical Chemistry, 2019, 113: 25-31.

[41] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.

[42] WAN L, GAO H, GAO H, et al. Selective extraction and determination of steroidal glycoalkaloids in potato tissues by electromembrane extraction combined with LC-MS/MS[J]. Food Chemistry, 2022, 367: 130724.

[43] GAO H, CHEN M, GAO H, et al. Determination of ractopamine residue in animal derived foods using electromembrane extraction followed by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2022, 1675: 463179.

[44] WAN L, GAO H, LIU X, et al. Electromembrane extraction of clenbuterol from swine urine for monitoring illegal use in livestock[J]. Journal of Separation Science, 2022, 45(21): 1-8.

Progress in the application of liquid-phase microextraction technique in tobacco analysis

SHI Linping1,2, CHEN Mantang1, ZHAO Ge1, LIU Ruihong1, XIE Fuwei1*

1 Zhengzhou Tobacco Research of CNTC, Zhengzhou 450001, China;2 Zhengzhou University, Zhengzhou 450001, China

The use of rapid and efficient sample pretreatment methods for tobacco component analysis can reduce the influence of tobacco matrices on the analytical process. Liquid-phase microextraction technique is a simple, fast, and environmentally friendly sample pretreatment method. This paper introduces the principles of liquid-phase microextraction technology, analyzes the factors that affect extraction efficiency, and summarizes the progress in the application of liquid-phase microextraction technology in tobacco analysis. Addressing the shortcomings of liquid-phase microextraction technology in the pre-treatment of tobacco samples, the paper offers a perspective on its future applications.

liquid-phase microextraction; sample pre-treatment; tobacco analysis

. Email:xiefuwei@sina.com

国家自然科学基金“三维多孔碳基净化材料对农残及共存基质的竞争吸附机制研究”(32202166);郑州烟草研究创新专项“基于三维多孔碳笼净化烟草基质的农残快速筛查和定量分析研究”(312020CR0300);国家烟草专卖局创新平台科研活动稳定支持专项(312021AW0420)

时林平(1999—),在读硕士研究生,主要从事烟草化学研究,Tel:0371-67672690,Email:slphxy@163.com

谢复炜(1973—),Tel:0371-67672502,Email:xiefuwei@sina.com

2023-04-14;

2023-11-10

时林平,陈满堂,赵阁,等. 液相微萃取技术在烟草分析中的应用进展[J]. 中国烟草学报,2024,30(1). SHI Linping, CHEN Mantang, ZHAO Ge, et al. Progress in the application of liquid-phase microextraction technique in tobacco analysis[J]. Acta Tabacaria Sinica, 2024,30(1). doi:10.16472/j.chinatobacco.2023.T0058

猜你喜欢
液液有机溶剂液相
高效液相色谱法测定水中阿特拉津
反相高效液相色谱法测定食品中的甜蜜素
同种异体骨产品中有机溶剂残留分析
超声辅助分散液液微萃取与分光光度法联用测定痕量铜的研究
分散液液微萃取技术在食品分析中的应用进展
农产品中6种有机溶剂残留的气相色谱-质谱检测方法
原位生成离子液体分散液液萃取-高效液相色谱法测定水样中的莠去津
反相高效液相色谱法快速分析紫脲酸
超高效液相色谱法测定藻油中的DPA和DHA
分散液液微萃取-高效液相色谱法测定白酒中的酞酸酯